Letter to the Editor

  • G. J. McLachlan


Cluster Analysis Royal Statistical Society Bayesian Cluster Bootstrap Replication High Posterior Probability 


  1. Aitkin, M. A. (1980), “Mixture Applications of the EM Algorithm in GLIM,” in Compstat 1980, Proceedings Computational Statistics, Vienna: Physica-Verlag, pp. 537–541.Google Scholar
  2. Basford, K. E., and McLachlan, G. J. (1985), “Cluster Analysis in a Randomized Complete Block Design,” Communications in Statistics—Theory and Methods, 14, 451–463.CrossRefMathSciNetGoogle Scholar
  3. Bautista, M. G., Smith, D. W., and Steiner, R. L. (1997), “A Cluster-Based Approach to Means Separation,” Journal of Agricultural, Biological and Environmental Statistics, 2, 179–197.CrossRefMathSciNetGoogle Scholar
  4. Binder, D. A. (1978), “Bayesian Cluster Analysis,” Biometrika, 65, 31–38.MATHCrossRefMathSciNetGoogle Scholar
  5. — (1981), “Approximations to Bayesian Clustering Rules,” Biometrika, 68, 275–285.CrossRefMathSciNetGoogle Scholar
  6. Caliński, T., and Corsten, L. C. A. (1985), “Clustering Means in ANOVA by Simultaneously Testing,” Biometrics, 41, 39–48.CrossRefGoogle Scholar
  7. Carmer, S. G., and Lin, W. T. (1983), “Type 1 Error Rates for Divisive Clustering Methods for Grouping Means in Analysis of Variance,” Communications in statistics—Simulation and Computation, 12, 451–466.CrossRefGoogle Scholar
  8. Cox, D. R., and Spøtvoll, E. (1982), “On Partitioning Means Into Groups,” Scandinavian Journal of Statistics: Theory and Applications, 9, 147–152.MATHMathSciNetGoogle Scholar
  9. Dempster, A. P., Laird, N. M., and Rubin, D. B. (1997), “Maximum Likelihood From Incomplete Data via the EM Algorithm (with discussion),” Journal of the Royal Statistical Society, Series B, 39, 1–38.MathSciNetGoogle Scholar
  10. Edwards, A. W. F. and Cavalli-Sforza, L. L. (1965), “A Method for Cluster Analysis,” Biometrics, 21, 362–375.CrossRefGoogle Scholar
  11. Jolliffe, I. T. (1975), “Cluster Analysis as a Multiple Comparison Method,” in Applied Statistics, ed. R. P. Gupta, Amsterdam: North-Holland, pp. 159–168.Google Scholar
  12. McLachlan, G. J. (1987), “On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture,” Applied Statistics, 36, 318–324.CrossRefGoogle Scholar
  13. McLachlan, G. J., and Basford, K. E. (1988), Mixture Models: Inference and Applications to Clustering, New York: Marcel Dekker.MATHGoogle Scholar
  14. McLachlan, G. J., and Krishman, T. (1997), The EM Algorithm and Extensions, New York: Wiley.MATHGoogle Scholar
  15. Nelder, J. A. (1971), “Contribution to the Discussion of Paper by R. O’Neill and G. B. Wetherill,” Journal of the Royal Statistical Society, Series B, 33, 244–246.Google Scholar
  16. Scott, A. J., and Knott, M. (1974), “A Cluster Analysis Method for Grouping Means in the Analysis of Variance,” Biometrics, 30, 507–512.MATHCrossRefGoogle Scholar
  17. Steel, R., and Torrie, J. (1980), Principles and Procedures of Statistics: A Biometrical Approach (2nd ed.), San Francisco: McGraw-Hill.MATHGoogle Scholar

Copyright information

© International Biometric Society 2001

Authors and Affiliations

  • G. J. McLachlan
    • 1
  1. 1.Department of MathematicsUniversity of QueenslandSt. LuciaAustralia

Personalised recommendations