Introduction

Let H denote the class of normalized analytic functions f(z) having the form:

$$ f(z)=z+a_{2}z^{2}+a_{3}z^{3}+... $$
(1)

in the unit disk \(U=\left \{ z\in \mathbb {C}:|z|<1\right \} \). Also, let S denote the subclass of H univalent in U. Suppose that S denote the subclass of S consisting of the functions f(z) which are starlike in U. A function f(z)∈K is said to be convex in U if f(z)∈S satisfies the condition that zf(z)∈S. If f(z)∈H satisfies the geometric condition:

$$ \Re \left(\frac{zf^{\prime }(z)}{f(z)}\right)>\beta,\;\;z\in U $$

for some real β(0≤β<1), then we say that f(z) belongs to the class S(β) starlike of order β, and if f(z)∈H satisfies the geometric condition:

$$\Re \left(1+\frac{zf^{\prime\prime}(z)}{f^{\prime}(z)}\right)>\beta,\;\;z\in U $$

for some real β(0≤β<1), then we say that f(z) belongs to the class K(β) convex of order β (see [1, 2]). Let the function g(z) of the form:

$$ g(z)=z+z^{3}+z^{5}+...\;\;\;z\in U $$
(2)

be in the class S while the function g(z) of the form:

$$ g(z)=z+z^{2}+z^{3}+...\;\;\;z\in U $$
(3)

be in the class K. With reference to (2) and (3), we can write that:

$$ g_{\alpha }(z)=\frac{z}{1-z^{\alpha }}=z+\sum\limits_{k=1}^{\infty }z^{1+k\alpha }\;\;\;\;z\in U, $$
(4)

where we consider the principal value of z kα for some real α(0<α≤2). See Darus and Owa [3] for some properties of functions fα(z) of the form (4). Here, we present a more generalized form of (4) such that:

$$ g_{\alpha,n}(z)=\frac{A^{n}z}{\left(A+Bz^{\alpha }\right)^{n}} =z+\sum\limits_{k=1}^{\infty }(-1)^{k}\frac{B^{k}}{A^{k}}n_{k}z^{1+k\alpha }\;\;\;\;z\in U $$
(5)

for some real α(0<α≤2),−1≤B<A≤1,n≥0 and nk is given by \(n_{k}=\Pi _{j=1}^{k}\left (\frac {n+j-1}{j!}\right)\).

In view of (1) and (5), we introduce a class Hα,n of analytic function fα,n(z) which is a convolution (or Hadamard product) of f(z) and gα,n (f(z)∗gα,n(z)) such that:

$$ f_{\alpha,n}(z)=z+\sum\limits_{k=1}^{\infty }(-1)^{k}\frac{B^{k}}{A^{k}} n_{k}a_{k+1}z^{1+k\alpha }\;\;\;\;z\in U $$
(6)

In addition, if fα,n(z)∈Hα,n satisfies the following condition:

$$ \Re \left(\frac{zf_{\alpha,n}^{\prime }(z)}{f_{\alpha,n}(z)}\right)>\gamma \;\;\;z\in U $$
(7)

for some real α(0<α≤2),n>0, and γ(0≤γ<1), then fα,n belong to the starlike class \(S_{\alpha,n}^{\ast }(A,B,\gamma)\) (of order γ). Also, if fα,n(z)∈Hα,n satisfies the following condition:

$$ \Re \left(1+\frac{zf_{\alpha,n}^{\prime \prime }(z)}{f_{\alpha,n}^{\prime }(z)}\right)>\gamma \;\;\;z\in U $$
(8)

for some real α(0<α≤2),n>0, and γ(0≤γ<1), then fα,n belong to the convex class \(K_{\alpha,n}^{\ast }(A,B,\gamma)\) (of order γ). Here, it is noted that fα,n(z)∈Hα,n(z) belong to the convex class \(K_{\alpha,n}(A,B,\gamma)\Leftrightarrow zf_{\alpha,n}^{\prime }(z)\) belong to the starlike class \(S_{\alpha,n}^{\ast }(A,B,\gamma)\). For the purpose of the present investigation, we shall call to mind the following definitions and lemmas.

Definition 1

(Subordination principle) For two functions f and g analytic in U, we say that f is subordinate to g, and write fg in U or f(z)≺g(z), if there exists a Schwarz function w(z), which is analytic in U with w(0)=0 and |w(z)|<1 (zU), such that f(z)=g(w(z)). It is known that:

$$f(z)\prec g(z)\,\,\Rightarrow f(0)=g(0)\ {and}\ f(U)\subset g(U). $$

Furthermore, if the function g is univalent in U:

$$ f(z)\prec g(z)\,\,\,\Leftrightarrow f(0)=g(0)\ { and }\ f(U)\subset g(U). $$
(9)

Also, we say that g(z)is superordinate to f(z) in U (see [46]).

Definition 2

(Subordinating factor sequence) A sequence \(\left \{ b_{k}\right \}_{k=1}^{\infty }\) of complex numbers is called subordinating factor sequence if for every univalent function f(z) in K, we have the subordination given by:

$$ \sum\limits_{k=1}^{\infty }a_{k}b_{k}z^{k}\prec f(z)\;\;\;\left(z\in U,\;\;a_{1}=1\right) \ (see {[4-6]}). $$
(10)

Lemma 1

The sequence \(\left \{ b_{k}\right \}_{k=1}^{\infty }\) is a subordinating factor sequence if and only if:

$$ \Re \left\{ 1+2\sum\limits_{k=1}^{\infty }b_{k}z^{k}\right\} >0\;\;\;(z\in U). $$
(11)

The lemma above is due to Wilf [7]. Interested reader can also refer to [46].

Lemma 2

Let s(z)(s(z)≠0)be a univalent function in U. Also, let μ≠0 be a complex number, then we have that:

$$ \Re \left\{ 1+z\frac{s^{\prime \prime }(z)}{s^{\prime }(z)}-z\frac{s^{\prime }(z)}{s(z)}\right\} >{\text{max}}\left\{ 0,\Re \Big(\frac{\mu -1}{\mu }s(z)\Big) \right\}. $$
(12)

Suppose that r (r(z)≠0) satisfies the differential equation:

$$ (1-\mu)(r(z)-1)+\mu \frac{zr^{\prime }(z)}{r(z)}\prec (1-\mu)(s(z)-1)+\mu \frac{zs\prime (z)}{s(z)},\;z\in U $$
(13)

then rs and s is the best dominant (see [8] among others).

Lemma 3

Let ωbe regular in H with ω(0)=0. Also, suppose that |ω(z)| attains its maximum value on the circle |z|<1 at a point z0, then:

$$ z_{0}\omega^{\prime }(z_{0})=\sigma \omega (z_{0}), $$
(14)

where σ is any real number and σ≥1 (see [8] among others).

Coefficient inequality

In this section, we consider the coefficient inequalities for function fα,n(z) given by (6) belonging to both classes \(S_{\alpha,n}^{\ast }(A,B,\gamma)\) and Kα,n(A,B,γ) in the unit disk U.

Theorem 1

Let the function fα,n(z) of the form (6) satisfy the inequality:

$$ \sum_{k=1}^{\infty }\left(k\alpha -\gamma +1\right)n_{k}\frac{|B|^{k}}{A^{k}} |a_{k+1}|\leq 1-\gamma. $$
(15)

Then, \(f_{\alpha,n}(z)\in S_{\alpha,n}^{\ast }(A,B,\gamma)\) for 0≤γ<1s,0<α≤2,−1≤B<A≤1,0<A≤1 and n>0. The equality holds true for fα,n(z)given by:

$$f_{\alpha,n}(z)=z+\frac{\left(1-\gamma \right) e^{i\pi }}{\big(k\alpha -\gamma +1\big)n_{k}\frac{|B|^{k}}{A^{k}}}z^{1+k\alpha }\ \ \ (k\geq 1). $$

Proof

Suppose that the function fα,n(z) given by (6) satisfies (15), then:

$$\left|\frac{zf_{\alpha,n}^{\prime }(z)}{f_{\alpha,n}(z)}-1\right|=\left| \frac{\sum_{k=1}^{\infty }(-1)^{k}k\alpha n_{k}\frac{B^{k}}{A^{k}} a_{k+1}z^{k\alpha }}{1+\sum_{k=1}^{\infty }(-1)^{k}n_{k}\frac{B^{k}}{A^{k}} a_{k+1}z^{k\alpha }}\right| $$
$$\leq \frac{\sum_{k=1}^{\infty }k\alpha n_{k}\frac{|B|^{k}}{A^{k}} |a_{k+1}||z|^{k\alpha }}{1-\sum_{k=1}^{\infty }n_{k}\frac{|B|^{k}}{A^{k}} |a_{k+1}||z|^{k\alpha }}|<\frac{\sum_{k=1}^{\infty }k\alpha n_{k}\frac{ |B|^{k}}{A^{k}}|a_{k+1}|}{1-\sum_{k=1}^{\infty }n_{k}\frac{|B|^{k}}{A^{k}} |a_{k+1}|}\leq 1-\gamma. $$

This shows that \(f_{\alpha,n}(z)\in S_{\alpha,n}^{\ast }(A,B,\gamma)\), and this ends the proof. □

Corollary 1

Let the function fα,n(z)of the form (6) satisfy the inequality:

$$\sum_{k=1}^{\infty }\big(k\alpha +1\big)n_{k}\frac{|B|^{k}}{A^{k}} |a_{k+1}|\leq 1. $$

Then, \(f_{\alpha,n}(z)\in S_{\alpha,n}^{\ast }(A,B,0)\).

Theorem 2

Let the function fα,n(z) of the form (6) satisfy the inequality:

$$ \sum\limits_{k=1}^{\infty }\left(k\alpha +1\right)\left(k\alpha -\gamma +1\right)n_{k} \frac{|B|^{k}}{A^{k}}|a_{k+1}|\leq 1-\gamma. $$
(16)

Then, fα,n(z)∈Kα,n(A,B,γ) for 0≤γ<1, 0<α≤2,−1≤B<A≤1,0<A≤1 and n>0. The equality holds true for fα,n(z)given by:

$$f_{\alpha,n}(z)=z+\frac{\left(1-\gamma \right) e^{i\pi }}{\left(k\alpha +1 \right)\left(k\alpha -\gamma +1\right)n_{k}\frac{|B|^{k}}{A^{k}}}z^{1+k\alpha }\ \ \ \ \ (k\geq 1). $$

Proof

The proof is similar to that of Theorem 1. □

Corollary 2

Let the function fα,n(z) of the form (6) satisfy the inequality:

$$\sum\limits_{k=1}^{\infty }\left(k\alpha +1\right)^{2}n_{k}\frac{|B|^{k}}{A^{k}} |a_{k+1}|\leq 1. $$

Then, fα,n(z)∈Kα,n(A,B,0).

Remark 1

Putting A=n=1 and B=−1 in Theorems 1 and 2, we obtain the results obtained by Darus and Owa [[3], Theorems 3 and 4].

Next, we present some subordination results.

Some subordination results

Our prime objective here is to establish sufficient conditions for functions belonging to the analytic class \(S_{\alpha,n}^{\ast }(A,B,\gamma)\).

Theorem 3

Suppose that the function fα,n(z) is as defined in (6). Let 0<α≤2,n>0,σ≠−1 and μbe a non-zero complex number in U such that:

$$\Re \left\{ 1+\frac{z[1-\sigma (1-2z)]}{(1-z)(1+\sigma z)}\right\} >{\text{max}}\left\{ 0,\Re \left(\frac{\mu -1}{\mu }\right)\left(\frac{1+\sigma z}{1-z} \right)\right\}. $$

If

$${}(1-\mu)\left(f_{\alpha,n}^{\prime }(z)-1\right)+\mu \left(\frac{zf_{\alpha,n}^{\prime \prime }(z)}{f_{\alpha,n}^{\prime }(z)}\right)\prec (1-\mu)\left(\left(\frac{1+\sigma z}{1-z}\right)-1\right)+\mu \left(\frac{(1+\sigma)z}{ (1+\sigma z)(1-z)}\right) $$

holds true, then \(f_{\alpha,n}(z)\in S_{\alpha,n}^{\ast }(A,B,\gamma)\).

Proof

Suppose that we let:

$$ r(z)=f_{\alpha,n}^{\prime }(z)\;\;\;{\text{and}}\;\;\;s(z)=\frac{1+\sigma z}{1-z}. $$
(17)

Then,

$${}\Re \left\{ 1+\frac{zs^{\prime \prime }(z)}{s^{\prime }(z)}-\frac{zs^{\prime }(z)}{s(z)}\right\} >{\text{max}}\left\{ 0,\Re \left(\frac{\mu -1}{\mu }\right)\left(\frac{1+\sigma z}{1-z}\right)\right\} ={\text{max}}\left\{ 0,\Re \left(\frac{\mu -1}{\mu }s(z)\right)\right\} $$

and

$$(1-\mu)(r(z)-1)+\mu \frac{zr^{\prime }(z)}{r(z)}=(1-\mu)\left(f_{\alpha,n}^{\prime }(z)-1\right)+\mu \left(\frac{zf_{\alpha,n}^{\prime \prime }(z)}{ f_{\alpha,n}^{\prime }(z)}\right) $$
$$ \prec (1-\mu)\left(\left(\frac{1+\sigma z}{1-z}\right)-1\right)+\mu \left(\frac{ (1+\sigma)z}{(1+\sigma z)(1-z)}\right)=(1-\mu)(s(z)-1)+\mu \frac{zs^{\prime }(z)}{s(z)}. $$
(18)

Using Lemma 2 in (18), then we obtain the desired result. □

Theorem 4

Let the analytic function fα,n(z)be defined as in (6). Suppose that fα,n(z) satisfies the condition that:

$$ \Re \left\{ \frac{zf_{\alpha,n}^{\prime \prime }(z)}{f_{\alpha,n}^{\prime }(z)}\right\} <-\frac{1+\sigma }{2(1-\sigma)}. $$
(19)

Then, for 0<α≤2,n>0 and \(\sigma >1, f_{\alpha,n}(z)\in S_{\alpha,n}^{\ast }(A,B,\gamma)\).

Proof

Setting:

$$f_{\alpha,n}^{\prime }(z)=\left(\frac{1+\sigma \omega (z)}{1-\omega (z)} \right),\;\;\;\omega (z)\neq 1. $$

Then, ω is regular in U, and since σ≠−1, then ω(0)=0. Also, it follows that:

$$\Re \left\{ \frac{zf_{\alpha,n}^{\prime \prime }(z)}{f_{\alpha,n}^{\prime }(z)}\right\} =\Re \left\{ \frac{(1+\sigma)z\omega^{\prime }(z)}{(1-\omega (z))(1+\sigma \omega (z))}\right\} <\frac{\sigma +1}{2(\sigma -1)},\;\;\sigma \neq 1. $$

Next, we show that |ω(z)|<1. So, let there exists a point z0U such that for |z|≤|z0|:

$${\text{max}}|\omega (z)|=|\omega (z)|=1. $$

Then, appealing to Lemma 3 and setting ω(z0)=eiθ,z0ω(z0)=δeiθ and for δ≥1,σ>1, we have that:

$$\begin{aligned} \Re \left\{\frac{zf_{\alpha,n}^{\prime \prime}(z)}{f_{\alpha,n}^{\prime}(z)}\right\} &=\Re \left\{\frac{(1+\sigma)z_{0}\omega^{\prime}(z_{0})}{(1-\omega (z_{0}))(1+\sigma \omega (z_{0}))}\right\} =\Re \left\{\frac{\delta e^{i\theta}(1+\sigma)}{(1-e^{i\theta})(1+\sigma e^{i\theta})} \right\} \\&=\frac{\delta(\sigma +1)}{2(\sigma -1)}\geq \frac{(\sigma +1)}{2(\sigma -1)}. \end{aligned} $$

Therefore,

$$\Re \left\{ \frac{zf_{\alpha,n}^{\prime \prime }(z)}{f_{\alpha,n}^{\prime }(z)}\right\} \geq -\frac{1+\sigma }{2(1-\sigma)}\;\;\;z\in U $$

which negates the hypothesis (19).

Hence, we conclude that |ω(z)|<1 for all zU and:

$$f_{\alpha,n}^{\prime }(z)\prec \left(\frac{1+\sigma z}{1-z}\right),\;\;\sigma \neq 1,\;z\in U $$

and this obviously ends the proof. □

Application of a subordination theorem

Let \(\overline {S}_{\alpha,n}^{\ast }(A,B,\gamma)\) and \(\overline {K} _{\alpha,n}(A,B,\gamma)\) denote the classes of functions fa,nHa,n whose coefficients satisfy conditions (15) and (16), respectively. We note that \(\overline {S}_{\alpha,n}^{\ast }(A,B,\gamma)\subseteq S_{\alpha,n}^{\ast }(A,B,\gamma)\ \)and \(\overline {K}_{\alpha,n}(A,B,\gamma)\subseteq K_{\alpha,n}(A,B,\gamma).\) Here, we consider an application of the subordination result given in Lemma 1 to both classes \(\overline {S} _{\alpha,n}^{\ast }(A,B,\gamma)\) and \(\overline {K}_{\alpha,n}(A,B,\gamma) \).

Theorem 5

Let \(f_{\alpha,n}(z)\in \overline {S}_{\alpha,n}^{\ast }(A,B,\gamma)\). If 0≤γ<1,0<α≤2,−1≤B<A≤1,0<A≤1 and n>0, then:

$$ \frac{n(\alpha -\gamma +1)|B|}{2\big[n\alpha |B|+(1-\gamma)(A+n|B|)\big]} \left(f_{\alpha,n}\ast g_{\alpha }\right)(z)\prec g_{\alpha }(z) $$
(20)

for every function gα in Kα and:

$$ \Re \left(f_{\alpha,n}(z)\right)>-\frac{\left[n\alpha |B|+(1-\gamma)(A+n|B|) \right]}{n(\alpha -\gamma +1)|B|}. $$
(21)

The constant factor:

$$\frac{n(\alpha -\gamma +1)|B|}{2\left[n\alpha |B|+(1-\gamma)(A+n|B|)\right]} $$

in the subordination result (20) is sharp.

Proof

Let \(f_{\alpha,n}\in \overline {S}_{\alpha,n}^{\ast }(A,B,\gamma)\) and let gα be any function in Kα. Then:

$$\frac{n(\alpha -\gamma +1)|B|}{2\left[n\alpha |B|+(1-\gamma)(A+n|B|)\right]} \left(f_{\alpha,n}\ast g_{\alpha }\right)(z)\prec g_{\alpha }(z) $$
$$=\frac{n(\alpha -\gamma +1)|B|}{2\left[n\alpha |B|+(1-\gamma)(A+n|B|)\right]} \left(z+\sum\limits_{k=1}^{\infty }a_{k+1}b_{k+1}z^{k\alpha +1}\right). $$

Thus, by Definition 2, the subordination result (20) will hold true if:

$$\left\{ \frac{n(\alpha -\gamma +1)|B|}{2\left[n\alpha |B|+(1-\gamma)(A+n|B|) \right]}a_{k}\right\}_{k=1}^{\infty } $$

is a subordinating factor sequence, with a1=1, appealing to Lemma 1, this is equivalent to:

$$ \Re \left\{ 1+\sum\limits_{k=1}^{\infty }\frac{n(\alpha -\gamma +1)|B|}{\left[ n\alpha |B|+(1-\gamma)(A+n|B|)\right]}a_{k}z^{(k-1)\alpha +1}\right\} >0\;\;\;(z\in U). $$
(22)

Since \(n_{k}\left (k\alpha -\gamma +1\right)\frac {|B|^{k}}{A^{k}}\) is an increasing function of k (k≥1), we have that:

$$\Re \left\{ 1+\sum\limits_{k=1}^{\infty }\frac{n(\alpha -\gamma +1)|B|}{\left[ n\alpha |B|+(1-\gamma)(A+n|B|)\right]}a_{k}z^{(k-1)\alpha +1}\right\} $$
$$=\Re \left\{ 1+\frac{n(\alpha -\gamma +1)|B|}{M}z+\frac{A}{M} \sum\limits_{k=2}^{\infty }n(\alpha -\gamma +1)\frac{|B|}{A}a_{k}z^{(k-1)\alpha +1}\right\} $$
$$\geq 1-\frac{n(\alpha -\gamma +1)|B|}{M}r-\frac{A}{M}\sum\limits_{k=2}^{\infty }n_{k-1}\Big((k-1)\alpha -\gamma +1\Big)\frac{|B|^{k-1}}{A^{k-1}} a_{k}r^{(k-1)\alpha +1} $$
$$>1-\frac{n(\alpha -\gamma +1)|B|}{\left[n\alpha |B|+(1-\gamma)(A+n|B|)\right]} r-\frac{A\left(1-\gamma \right) }{\left[n\alpha |B|+(1-\gamma)(A+n|B|)\right]} r^{\alpha +1} $$
$$ >1-\frac{n(\alpha -\gamma +1)|B|}{\left[n\alpha |B|+(1-\gamma)(A+n|B|)\right]} r-\frac{A\left(1-\gamma \right) }{\left[n\alpha |B|+(1-\gamma)(A+n|B|)\right]} r=1-r>0 $$
(23)
$$\left(|z|=r<1\right), $$

where M=[nα|B|+(1−γ)(A+n|B|)]. Therefore, (22) holds true in U and this obviously proves the inequality (20) while (21) follows by taking:

$$g_{\alpha }(z)=\frac{z}{1-z^{\alpha }}\in K_{\alpha } $$

in (20). Now, suppose that we consider the function qα,n(z) of the form:

$$q_{\alpha,n}(z)=z-\frac{1-\gamma }{n(\alpha -\gamma +1)\frac{|B|}{A}} z^{\alpha +1} $$

which belongs to the class \(\overline {S}_{\alpha,n}^{\ast }(A,B,\gamma)\). Then, using (20), we have that:

$$\frac{n(\alpha -\gamma +1)|B|}{2\left[n\alpha |B|+(1-\gamma)(A+n|B|)\right]}.q_{\alpha,n}(z)\prec \frac{z}{1-z^{\alpha }}\;\;\;(z\in U) $$

which can easily be verified that for 0≤γ<1,0<α≤2,−1≤B<A≤1,0<A≤1,n≥0 and |z|≤r:

$${\text{min}}\left\{ \Re \left(\frac{n(\alpha -\gamma +1)|B|}{2\left[n\alpha |B|+(1-\gamma)(A+n|B|)\right]}.q_{\alpha,n}(z)\right)\right\} =-\frac{1}{2} \;\;(z\in U) $$

and this evidently completes the proof of Theorem 5. For various choices of the parameters involved, several interesting results are obtained. Given below are few instances. □

Corollary 3

Let \(f_{\alpha,n}(z)\in \overline {S}_{\alpha,n}^{\ast }(1,-1,\gamma)\). Then:

$$\frac{n(\alpha -\gamma +1)}{2\left[n\alpha +(1-\gamma)(1+n)\right]}\left(f_{\alpha,n}\ast g_{\alpha }\right)(z)\prec g_{\alpha }(z) $$

for every function gα in Kα and:

$$\Re \left(f_{\alpha,n}(z)\right)>-\frac{\left[n\alpha +(1-\gamma)(1+n)\right]}{ n(\alpha -\gamma +1)}. $$

The constant factor:

$$\frac{n(\alpha -\gamma +1)}{2\left[n\alpha +(1-\gamma)(1+n)\right]} $$

is sharp.

Corollary 4

Let \(f_{\alpha,1}(z)\in \overline {S}_{\alpha,1}^{\ast }(1,-1,\gamma)\). Then:

$$\frac{(\alpha -\gamma +1)}{2(\alpha -2\gamma +2)}\left(f_{\alpha,1}\ast g_{\alpha }\right)(z)\prec g_{\alpha }(z) $$

for every function gα in Kα and:

$$\Re \left(f_{\alpha,1}(z)\right)>-\frac{\left(\alpha -2\gamma +2\right)}{(\alpha -\gamma +1)}. $$

The constant factor:

$$\frac{(\alpha -\gamma +1)}{2\left(\alpha -2\gamma +2\right)} $$

is sharp.

Corollary 5

[9,10] Let \(f_{1,1}(z)\in \overline {S} _{1,1}^{\ast }(1,-1,\gamma)\). Then:

$$\frac{(2-\gamma)}{2\left(3-2\gamma \right)}\left(f_{1,1}\ast g_{1}\right)(z)\prec g_{1}(z) $$

for every function g1 in K1 and:

$$\Re \left(f_{1,1}(z)\right)>-\frac{\left(3-2\gamma \right)}{(2-\gamma)}. $$

The constant factor:

$$\frac{(2-\gamma)}{2\left(3-2\gamma \right)} $$

is sharp.

Corollary 6

[911] Let \(f_{1,1}(z)\in \overline {S} _{1,1}^{\ast }(1,-1,0)\). Then:

$$\frac{1}{3}\left(f_{1,1}\ast g_{1}\right)(z)\prec g_{1}(z) $$

for every function g1 in K1 and:

$$\Re \left(f_{1,1}(z)\right)>-\frac{3}{2}. $$

Theorem 6

Let \(f_{\alpha,n}(z)\in \overline {K}_{\alpha,n}(A,B,\gamma)\). If 0≤γ<1,0<α≤2,−1≤B<A≤1 and n>0, then:

$$ \frac{n(\alpha +1)(\alpha -\gamma +1)|B|}{2\left[n\alpha (\alpha +1)|B|+(1-\gamma)(A+n(\alpha +1)|B|)\right]}\left(f_{\alpha,n}\ast g_{\alpha } \right)(z)\prec g_{\alpha }(z) $$
(24)

for every function gα in Kα and:

$$ \Re \left(f_{\alpha,n}(z)\right)>-\frac{\left[n\alpha (\alpha +1)|B|+(1-\gamma)(A+n(\alpha +1)|B|)\right]}{n(\alpha +1)(\alpha -\gamma +1)|B|}. $$
(25)

The constant factor:

$$\frac{n(\alpha +1)(\alpha -\gamma +1)|B|}{2\left[n\alpha (\alpha +1)|B|+(1-\gamma)(A+n(\alpha +1)|B|)\right]} $$

in the subordination result (24) cannot be replaced by a larger one, and the proof of which is similar to that of Theorem 3.

Corollary 7

Let \(f_{\alpha,n}(z)\in \overline {K}_{\alpha,n}(1,-1,\gamma)\). Then:

$$ \frac{n(\alpha +1)(\alpha -\gamma +1)}{2\left[n\alpha (\alpha +1)+(1-\gamma)(1+n(\alpha +1))\right]}\left(f_{\alpha,n}\ast g_{\alpha }\right)(z)\prec g_{\alpha }(z) $$
(26)

for every function gα in Kα and:

$$ \Re \left(f_{\alpha,n}(z)\right)>-\frac{\left[n\alpha (\alpha +1)+(1-\gamma)(1+n(\alpha +1))\right]}{n(\alpha +1)(\alpha -\gamma +1)}. $$
(27)

The constant factor:

$$\frac{n(\alpha +1)(\alpha -\gamma +1)}{2\left[n\alpha (\alpha +1)+(1-\gamma)(1+n(\alpha +1))\right]} $$

cannot be replaced by a larger one.

Corollary 8

Let \(f_{\alpha,1}(z)\in \overline {K}_{\alpha,1}(1,-1,\gamma)\). Then:

$$ \frac{(\alpha +1)(\alpha -\gamma +1)}{2\left[\alpha (\alpha +1)+(1-\gamma)(\alpha +2)\right]}\left(f_{\alpha,1}\ast g_{\alpha }\right)(z)\prec g_{\alpha }(z) $$
(28)

for every function gα in Kα and:

$$ \Re \left(f_{\alpha,1}(z)\right)>-\frac{\left[\alpha (\alpha +1)+(1-\gamma)(\alpha +2)\right]}{(\alpha +1)(\alpha -\gamma +1)}. $$
(29)

The constant factor:

$$\frac{(\alpha +1)(\alpha -\gamma +1)}{2\left[\alpha (\alpha +1)+(1-\gamma)(\alpha +2)\right]} $$

cannot be replaced by a larger one.

Corollary 9

[9,10] Let \(f_{1,1}(z)\in \overline {K} _{1,1}(1,-1,\gamma)\). Then:

$$ \frac{2-\gamma }{5-3\gamma }\left(f_{1,1}\ast g_{1}\right)(z)\prec g_{1}(z) $$
(30)

for every function g1 in K1 and:

$$ \Re \left(f_{1,1}(z)\right)>-\frac{5-3\gamma }{2(2-\gamma)}. $$
(31)

The constant factor:

$$\frac{2-\gamma }{5-3\gamma } $$

cannot be replaced by a larger one.

Corollary 10

[9,10] Let \(f_{1,1}(z)\in \overline {K} _{1,1}(1,-1,0)\). Then:

$$ \frac{2}{5}\left(f_{1,1}\ast g_{1}\right)(z)\prec g_{1}(z) $$
(32)

for every function g1 in K1 and:

$$ \Re \left(f_{1,1}(z)\right)>-\frac{5}{4}. $$
(33)

The constant factor:

$$\frac{2}{5} $$

cannot be replaced by a larger one.

For further illustrations on the applications of the subordination result stated in Lemma 1, interested reader can see [4,6,811].