Afreen F, Zobayed SMA, Kozai T. Spectral quality and UV-B stress stimulate glycyrrhizin concentration of Glycyrrhiza uralensis in hydroponic and pot system. Plant Physiol Biochem. 2005;43:1074–81. https://doi.org/10.1016/j.plaphy.2005.11.005.
CAS
Article
PubMed
Google Scholar
Amudha P, Jayakumar M, Kulandaivelu G. Impacts of ambient solar UV (280-400 nm) radiation on three tropical legumes. J Plant Biol. 2005;48:284–91.
Article
Google Scholar
Ballare CL, Casal JJ, Kendrick RE. Responses of light-grown wild-type and long-hypocotyl mutant cucumber seedlings to natural and simulated shade light. Photochem Photobiol. 1991;54:819–26.
Article
Google Scholar
Baroniya SS, Kataria S, Pandey GP, Guruprasad KN. Growth, photosynthesis and nitrogen metabolism in soybean varieties after exclusion of the UV-B and UV-A/B components of solar radiation. Crop J. 2014;2:388–97. https://doi.org/10.1016/j.cj.2014.08.002.
Article
Google Scholar
Bassman JH. Ecosystem consequences of enhanced solar ultraviolet radiation: secondary plant metabolites as mediators of multiple trophic interactions in terrestrial communities. Photochem Photobiol. 2004;79:382–98.
CAS
Article
PubMed
Google Scholar
Caldwell MM, Bornman JF, Ballare CL. Terrestrial ecosystem, increased solar ultraviolet radiation and interactions with other climatic change factors. Photochem Photobiol Sci. 2003;2:29–38. https://doi.org/10.1039/B700019G.
CAS
Article
PubMed
Google Scholar
Chappell J, Hahlbrock K. Transcription of plant defense genes in response to UV light or fungal elicitor. Nature. 1984;311:76–8.
CAS
Article
Google Scholar
Cristian DB, Gustavo P, Gosmann G. TLC fingerprint of flavonoids and saponins from Passiflora species. J Liquid Chromatography Related Tech. 2005;28:2285–91. https://doi.org/10.1081/JLC-200064212.
CAS
Article
Google Scholar
Crombie L, Crombie WML, Whiting DA. The chemical defenses of oat roots against ‘take-all’ disease. In: Hostettmann K, Lea PJ, editors. Biologically active natural products. Oxford: Oxford University Press; 1987. p. 245–59.
Google Scholar
Cuadra P, Harborne JB, Waterman PG. Increases in surface flavonols and photosynthetic pigments in Gnaphalium luteoalbum in response to UV-B radiation. Phytochem. 1997;45:1377–83. https://doi.org/10.1016/S0031-9422(97)00183-0.
CAS
Article
Google Scholar
Dehariya P, Kataria S, Guruprasad KN, Pandey GP. Photosynthesis and yield in cotton (Gossypium hirsutum L.) var. Vikram after exclusion of ambient solar UV-B/A. Acta Physiol Plant. 2012;34:1133–44. https://doi.org/10.1007/s11738-011-0910-x.
CAS
Article
Google Scholar
Dubey A, Guruprasad KN. Induction of anthocyanin synthesis by UV-B in Sorghum bicolor seedlings-dependence on de novo synthesis of phenylalanine ammonia lyase. J Plant Biol. 1999;26:225–9.
Filella I, Penuelas J. Altitudinal differences in UV absorbance, UV reflectance and related morphological traits of Quercus ilex and Rhododendron ferrugineum in the Mediterranean region. Plant Ecol. 1999;145:157–65.
Article
Google Scholar
Fuhrer J, Booker F. Ecological issues related to ozone: agricultural issues. Environ Int. 2003;29:141–54. https://doi.org/10.1016/S0160-4120(02)00157-5.
CAS
Article
PubMed
Google Scholar
Guruprasad K, Bhattacharjee S, Kataria S, et al. Growth enhancement of soybean (Glycine max) upon exclusion of UV-B and UV-A components of solar radiation: characterization of photosynthetic parameters in leaves. Photosyn Res. 2007;94:299–306. https://doi.org/10.1007/s11120-007-9190-0.
CAS
Article
PubMed
Google Scholar
Hasegawa K, Sokada M, Bruinsma J. Revision of the theory of phototropism in plants: a new interpretation of a classical experiment. Planta. 1989;178:540–4. https://doi.org/10.1007/BF00963824.
CAS
Article
PubMed
Google Scholar
Inostroza-Blancheteau C, Reyes-Díaz M, Arellano A, et al. Effects of UV-B radiation on anatomical characteristics, phenolic compounds and gene expression of the phenylpropanoid pathway in high bush blueberry leaves. Plant Physiol Biochem. 2014;85:85–95. https://doi.org/10.1016/j.plaphy.2014.10.015.
CAS
Article
PubMed
Google Scholar
Jansen MAK. van den Noort RE, Tan MYA, et al. Phenol-oxidizing peroxidases contribute to the protection of plants from ultraviolet radiation stress. Plant Physiol. 2001;126:1012–23. https://doi.org/10.1104/pp.126.3.1012.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kakani VG, Reddy KR, Zhao D, et al. Effects of ultraviolet-B radiation on cotton Gossypium hirsutum (L.) morphology and anatomy. Ann Bot. 2003;91:817–26. https://doi.org/10.1093/aob/mcg086.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kataria S, Guruprasad KN. Solar UV-B and UV-A/B exclusion effects on intraspecific variations in crop growth and yield of wheat varieties. Field Crop Res. 2012a;125:8–13. https://doi.org/10.1016/j.fcr.2011.08.011.
Article
Google Scholar
Kataria S, Guruprasad KN. Intraspecific variations in growth, yield and photosynthesis of sorghum varieties to ambient UV (280–400 nm) radiation. Plant Sci. 2012b;196:85–92. https://doi.org/10.1016/j.plantsci.2012.07.011.
CAS
Article
PubMed
Google Scholar
Kataria S, Guruprasad KN. Exclusion of solar UV components improves growth and performance of Amaranthus tricolor varieties. Sci Hortic. 2014;174:36–45. https://doi.org/10.1016/j.scienta.2014.05.003.
Article
Google Scholar
Kataria S, Guruprasad KN, Ahuja S, et al. Enhancement of growth, photosynthetic performance and yield by exclusion of ambient UV components in C3 and C4 plants. J Photochem Photobiol B: Biol. 2013;127:140–52. https://doi.org/10.1016/j.jphotobiol.2013.08.013.
CAS
Article
Google Scholar
Kolawole OM, Oguntoye SO, Agbede O, Olayeni AB. Studies on the efficiency of Bridelia ferruginea Benth. bark extract in reducing the coliform load and BOD of domestic waste water. Ethnobotanical Leaflets. 2006;10:228–38.
Krizek DT, Mirecki RM. Evidence for phototoxic effects of cellulose acetate in UV exclusion studies. Environ Experiment Bot. 2004;51:33–43.
CAS
Article
Google Scholar
Kumari R, Prasad MNV. Effect of UV-B pretreatment on essential oil components, health sensory secondary metabolites and antioxidant potential of Coleus aromaticus. International J Biol Pharmaceutical Res. 2014;5:675–88.
Google Scholar
Luo A, Qian Q, Yin H, et al. 2006. EUI1, encoding a putative cytochrome P450 monooxygenase regulates internode elongation by modulating gibberellins responses in rice. Plant Cell Physiol. 2006;47:181–91. https://doi.org/10.1093/pcp/pci233.
CAS
Article
PubMed
Google Scholar
Madronich S, Mckenzic RL, Caldwell MM, et al. Changes in UV-radiation reaching the earth’s surface. Ambio. 1995;24:143–52.
Marston A, Hostettman K. Antifungal, molluscicidal and cytotoxic compounds from plants used in traditional medicine. In: Hostettmann K, Lea PJ, editors. Biologically active natural products. Oxford: Oxford University Press; 1987. p. 65–83.
Google Scholar
Mathur S, Verma RK, Gupta MM, et al. Screening of genetic resources of the medicinal-vegetable plant Centella asiatica for herb and asiaticoside yields under shaded and full sunlight conditions. J Hortic Sci Biotechnol. 2000;75:551–4. https://doi.org/10.1080/14620316.2000.11511284.
Article
Google Scholar
Maulidiani H, Khatib A, Shaari K, et al. 2012. Discrimination of three pegaga (Centella) varieties and determination of growth-lighting effects on metabolites content based on the chemometry of 1H nuclear magnetic resonance spectroscopy. J Agric Food Chem. 2012;60:410–7. https://doi.org/10.1021/jf200270y.
CAS
Article
Google Scholar
McKenzie RL, Aucamp PJ, Bais AF, et al. Ozone depletion and climate change: impacts on UV radiation. Photochem Photobiol Sci. 2011;10:182–98. https://doi.org/10.1039/c0pp90034f.
CAS
Article
Google Scholar
Muller V, Albert A, Barbro JW, et al. Ecologically relevant UV-B dose combined with high PAR intensity distinctly affect plant growth and accumulation of secondary metabolites in leaves of Centella asiatica L. Urban J Photochem Photobiol B: Biol. 2013;127:161–9. https://doi.org/10.1016/j.jphotobiol.2013.08.014.
Article
Google Scholar
Narain A, Laloraya MM. Cucumber cotyledons expansion as a bioassay for cytokinins. Z Planzenphysiol. 1974;71:313–22.
CAS
Article
Google Scholar
Noguchi H, Hashimoto T. Phytochrome-mediated synthesis of novel growth inhibitors, A-2α and ß and dwarfism in peas. Planta. 1990;181:256–62.
CAS
Article
PubMed
Google Scholar
Noguchi HK, Hashimoto T. Red-light-induced changes in the distribution of growth inhibitors A-2α and A-2ß in dwarf pea seedlings. Plant Growth Reg. 1997;21:177–81.
Ohara S, Ohira T. Plant growth regulation effects of triterpenoid saponins. J Wood Sci. 2003;49:59–64.
CAS
Article
Google Scholar
Ohmura W, Ohara S, Kato A. Synthesis of triterpenoid saponins and their antitermitic activities. Mokuzai Gakkaishi. 1997;43:869–74. https://doi.org/10.11501/3164217.
CAS
Google Scholar
Ray SD, Laloraya MM. Interaction of gibberellic acid, abscisic acid & phenolic compounds in the control of hypocotyl growth of Amaranthus caudatus seedlings. Can J Bot. 1984;62:2047–52. https://doi.org/10.1139/b84-279.
CAS
Article
Google Scholar
Reddy KR, Kakani VG, Zhao D, et al. Interactive effects of ultraviolet-B radiation and temperature on cotton physiology, growth development and hyperspectral reflectance. J. Photochem Photobiol. 2004;79:416–27. https://doi.org/10.1562/2003-11-19-RA.1.
CAS
Article
Google Scholar
Saha S, Walia S, Kumar J, et al. Screening for feeding deterrent and insect growth regulatory activity of triterpenic saponins from Diploknema butyracea and Sapindus mukorossi. J Agric Food Chem. 2010;58:434–40. https://doi.org/10.1021/jf902439m.
CAS
Article
PubMed
Google Scholar
Sahu M, Vermaand D, Harris KK. Phytochemical analysis of the leaf, stem and seed extracts of Cajanus cajan (dicotyledoneae: fabaceae). World J Pharmacy Pharmaceutical Sci. 2014;3:694–733.
Google Scholar
Szakiel A, Pączkowski C, Henry M. Influence of environmental abiotic factors on 560 the content of saponins in plants. Phytochem Rev. 2011;10:471–91. https://doi.org/10.1007/s11101-010-9177-x.
Article
Google Scholar
Tevini M, Iwanzik W. Effects of UV-B radiation on growth and development of cucumber seedlings. In: Worrest RC, Caldwell MM, editors. Stratospheric ozone reduction and plant life, vol. 8. Berlin: Springer-Verlag; 1986. p. 171–286.
Chapter
Google Scholar
Tiwari P, Kumar B, Kaur M, et al. Phytochemical screening and extraction: a review. Int Pharmaceutica Sci. 2011;1(1):98–106.
Yang XW, Zhao J, Cui YX, et al. Anti-HIV-1 protease triterpenoid saponins from the seeds of Aesculus chinensis. J Nat Prod. 1999;62:1510–3. https://doi.org/10.1021/np990180u.
CAS
Article
PubMed
Google Scholar
Zavala JA, Ravetta DA. The Effect of solar UV-B radiation on terpenes and biomass production in Grindelia chiloensis (Asteraceae), a woody perennial of Patagonia. Argentina Plant Ecol. 2002;161:185–91.
Zhang L, Allen LH, Vaughan MM, et al. Solar ultraviolet radiation exclusion increases soybean internode lengths and plant height. Agric For Meteorol. 2014;184:170–8. https://doi.org/10.1016/j.agrformet.2013.09.011.
Article
Google Scholar
Zhang WJ, Bjorn LO. The effect of ultraviolet radiation on the accumulation of medicinal compounds in plants. Fitoterapia. 2009;80:207–18. https://doi.org/10.1016/j.fitote.2009.02.006.
CAS
Article
PubMed
Google Scholar
Zhu Y, Nomura T, Xu Y, et al. ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell. 2006;18:442–56. https://doi.org/10.1105/tpc.105.038455.
CAS
Article
Google Scholar
Ziska LH, Teramura AH, Sullivan JH. Physiological sensitivity of plants along an elevational gradient to UV-B radiation. Am J Bot. 1992;79:863–71.
Article
Google Scholar