Bioactive compounds and inflammation: an overview

Abstract

Purpose

Chronic low-grade inflammation is associated with chronic non-communicable diseases (CNCDs). Bioactive compounds (BC) may influence the reduction of low-grade inflammation. This narrative review highlights the relationship between CNCDs, inflammation, and ingestion of catechins, curcumin, quercetin, and resveratrol.

Methods

A PubMed research was conducted in the last 10 years. The search was for human studies, and we selected “case reports”; “clinical study”; “clinical trial”; “clinical trial, phase I”; “clinical trial, phase II”; “clinical trial, phase III”; “clinical trial, phase IV”; “comparative study”; “controlled clinical trial”; “multicenter study”; “observational study”; and “randomized clinical trial”. The research was carried out individually for each BC of the diet, and we selected studies related to CNCDs and risk factors for cardiometabolic diseases. The keywords used were “catechin,” “curcumin,” “quercetin,” and “resveratrol”, in addition to “inflammation.”

Results

There are no recommendations for BC intake. The studies in this review analyzed different doses, forms of presentation, clinical conditions, and periods of supplementation. Most articles on catechin, curcumin, and quercetin had a clear beneficial relationship between inflammation, CNCDs, and risk factors for cardiometabolic diseases. On the other hand, studies on resveratrol are inconclusive.

Conclusion

Some studies have shown beneficial effects of BC; however, the studies are not conclusive. In different situations, BC have no significant effects, and, at other times, they may even have a detrimental effect. Further studies are needed to establish which dose produces beneficial health effects and which clinical conditions can benefit from the intake of dietary sources from these BC.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

AH:

Arterial hypertension

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

BC:

Bioactive compounds

BMI:

Body mass index

CAMs:

Cell adhesion molecules

CNCDs:

Chronic non-communicable diseases

COX- 2:

Cyclooxygenase-2

CRP:

C-reactive protein

CVD:

Cardiovascular disease

EC:

Epicatechin

ECG:

Epicatechin gallate

EGCG:

Epigallocatequin gallate

HbA1c:

Glycated hemoglobin

HDL-c:

High-density lipoprotein cholesterol

HOMA:

Homeostasis evaluation model

IL:

Interleukin

LDL-c:

Low-density lipoprotein cholesterol

MS:

Metabolic syndrome

NAFLD:

Non-alcoholic fatty liver disease

NF-kB:

Nuclear factor-kappa B

RSV:

Resveratrol

T2D:

Type 2 diabetes

TG:

Triglycerides

TNF-α:

Tumor necrosis factor-alpha

References

  1. 1.

    WHO (2018). Noncommunicable Diseases Report.

  2. 2.

    Calder PC, Albers R, Antoine J-M, Blum S, Bourdet-Sicard R, Ferns GA, et al. Inflammatory disease processes and interactions with nutrition. Br J Nutr. 2009;101:1–45. https://doi.org/10.1017/s0007114509377867.

    CAS  Article  Google Scholar 

  3. 3.

    Calder PC, Ahluwalia N, Brouns F, Buetler T, Clement K, Cunningham K, et al. Dietary factors and low-grade inflammation in relation to overweight and obesity. Br J Nutr. 2011;106:S5–S78. https://doi.org/10.1017/S0007114511005460.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Leiherer A, Mündlein A, Drexel H. Phytochemicals and their impact on adipose tissue inflammation and diabetes. Vasc Pharmacol. 2013;58:3–20.

    CAS  Article  Google Scholar 

  5. 5.

    Bastos DHM, Rogero MM, Arêas JAG. Mecanismos de ação de compostos bioativos dos alimentos no contexto de processos inflamatórios relacionados à obesidade. Arq Bras Endocrinol Metabol. 2009;53:646–56. https://doi.org/10.1590/s0004-27302009000500017.

    Article  PubMed  Google Scholar 

  6. 6.

    Tsoupras A, Lordan R, Zabetakis I. Inflammation, not cholesterol, is a cause of chronic disease. Nutrients. 2018;10(5):604.

    Article  Google Scholar 

  7. 7.

    Gallot YS, McMillan JD, Xiong G, et al. Distinct roles of TRAF6 and TAK1 in the regulation of adipocyte survival, thermogenesis program, and high-fat diet-induced obesity. Oncotarget. 2017;8(68):112565–83. https://doi.org/10.18632/oncotarget.22575.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Landström M. The TAK1-TRAF6 signalling pathway. Int J Biochem Cell Biol. 2010;42:585–9.

    Article  Google Scholar 

  9. 9.

    Rogero MM, Calder PC. Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients. 2018;10(4):432.

    Article  Google Scholar 

  10. 10.

    Plenchette S, Romagny S, Laurens V, Bettaieb A. S-nitrosylation in TNF superfamily signaling pathway: implication in cancer. Redox Biol. 2015;6:507–15.

    CAS  Article  Google Scholar 

  11. 11.

    Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005;81:230–42. https://doi.org/10.1093/ajcn/81.1.230s.

    Article  Google Scholar 

  12. 12.

    Holst B, Williamson G. Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr Opin Biotechnol. 2008;19:73–82. https://doi.org/10.1016/j.copbio.2008.03.003.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    De Oliveira DM, Bastos DHM. Biodisponibilidade de Ácidos fenólicos. Quim Nova. 2011;34:1051–6. https://doi.org/10.1590/S0100-40422011000600023.

    Article  Google Scholar 

  14. 14.

    Liu RH. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr. 2004;134:3479S–85S. https://doi.org/10.1093/jn/134.12.3479S.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Prasad S, Sung B, Aggarwal BB. Age-associated chronic diseases require age-old medicine: Role of chronic inflammation. Prev Med (Baltim). 2012;54.Suppl(Suppl):S29–3.

    Article  Google Scholar 

  16. 16.

    Rescigno T, Tecce MF, Capasso A. Protective and restorative effects of nutrients and phytochemicals. Open Biochem J. 2018;12:46–64. https://doi.org/10.2174/1874091X01812010046.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Siriwardhana N, Kalupahana NS, Cekanova M, LeMieux M, Greer B, Moustaid-Moussa N. Modulation of adipose tissue inflammation by bioactive food compounds. J Nutr Biochem. 2013;24:613–23.

    CAS  Article  Google Scholar 

  18. 18.

    Fan FY, Sang LX, Jiang M, McPhee DJ. Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules. 2017;22(3):484.

    Article  Google Scholar 

  19. 19.

    He Y, Yue Y, Zheng X, Zhang K, Chen S, du Z. Curcumin, inflammation, and chronic diseases: how are they linked? Molecules. 2015;20:9183–213.

    CAS  Article  Google Scholar 

  20. 20.

    Quintanilha BJ, Reis BZ, Silva Duarte GB, et al. Nutrimiromics: role of microRNAs and nutrition in modulating inflammation and chronic diseases. Nutrients. 2017;9(11):1168.

    Article  Google Scholar 

  21. 21.

    Cialdella-Kam L, Ghosh S, Meaney MP, et al. Quercetin and green tea extract supplementation downregulates genes related to tissue inflammatory responses to a 12-week high fat-diet in mice. Nutrients. 2017;9(7):773. https://doi.org/10.3390/nu9070773.

    CAS  Article  PubMed Central  Google Scholar 

  22. 22.

    Rosa FT, Zulet MÁ, Marchini JS, Martínez JA. Bioactive compounds with effects on inflammation markers in humans. Int J Food Sci Nutr. 2012;63:749–65. https://doi.org/10.3109/09637486.2011.649250.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Nunes S, Danesi F, Del Rio D, Silva P. Resveratrol and inflammatory bowel disease: the evidence so far. Nutr Res Rev. 2018;31:85–97. https://doi.org/10.1017/s095442241700021x.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Cai ZY, Li XM, Liang JP, Xiang LP, Wang KR, Shi YL, et al. Bioavailability of tea catechins and its improvement. Molecules. 2018;23:10–3. https://doi.org/10.3390/molecules23092346.

    CAS  Article  Google Scholar 

  25. 25.

    Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4:807–18. https://doi.org/10.1021/mp700113r.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Cai X, Fang Z, Dou J, Yu A, Zhai G. Bioavailability of quercetin: problems and promises. Curr Med Chem. 2013;20:2572–82. https://doi.org/10.2174/09298673113209990120.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Wenzel E, Somoza V. Review metabolism and bioavailability of trans-resveratrol. 2005;472–481. https://doi.org/10.1002/mnfr.200500010.

  28. 28.

    Walle T. Bioavailability of resveratrol. 2011;1215:9–15. https://doi.org/10.1111/j.1749-6632.2010.05842.x.

  29. 29.

    Chimento A, De Amicis F, Sirianni R, et al. Progress to improve oral bioavailability and beneficial effects of resveratrol. Int J Mol Sci. 2019;20(6):1381.

    CAS  Article  Google Scholar 

  30. 30.

    Gambini J, Inglés M, Olaso G, Lopez-Grueso R, Bonet-Costa V, Gimeno-Mallench L, et al. Properties of resveratrol: in vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxidative Med Cell Longev. 2015;2015:1–13. https://doi.org/10.1155/2015/837042.

    CAS  Article  Google Scholar 

  31. 31.

    Basu A, Du M, Sanchez K, et al. Green tea minimally affects biomarkers of inflammation in obese subjects with metabolic syndrome. Nutrition. 2011;27:206–13. https://doi.org/10.1016/j.nut.2010.01.015.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Rondanelli M, Opizzi A, Perna S, Faliva M, Solerte SB, Fioravanti M, et al. Improvement in insulin resistance and favourable changes in plasma inflammatory adipokines after weight loss associated with two months’ consumption of a combination of bioactive food ingredients in overweight subjects. Endocrine. 2013;44:391–401. https://doi.org/10.1007/s12020-012-9863-0.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Sakata R, Nakamura T, Torimura T, et al. Green tea with high-density catechins improves liver function and fat infiltration in non-alcoholic fatty liver disease (NAFLD) patients: a double-blind placebo-controlled study. Int J Mol Med. 2013;32:989–94. https://doi.org/10.3892/ijmm.2013.1503.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Gutiérrez-Salmeán G, Ortiz-Vilchis P, Vacaseydel CM, Rubio-Gayosso I, Meaney E, Villarreal F, et al. Acute effects of an oral supplement of (−)-epicatechin on postprandial fat and carbohydrate metabolism in normal and overweight subjects. Food Funct. 2014;5:521–7. https://doi.org/10.1039/c3fo60416k.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Dower JI, Geleijnse JM, Gijsbers L, Schalkwijk C, Kromhout D, Hollman PC. Supplementation of the pure flavonoids epicatechin and quercetin affects some biomarkers of endothelial dysfunction and inflammation in (pre)hypertensive adults: a randomized double-blind, placebo-controlled, crossover trial. J Nutr. 2015;145:1459–63. https://doi.org/10.3945/jn.115.211888.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Gutiérrez-Salmeán G, Meaney E, Lanaspa MA, Cicerchi C, Johnson RJ, Dugar S, et al. A randomized, placebo-controlled, double-blind study on the effects of (−)-epicatechin on the triglyceride/HDLc ratio and cardiometabolic profile of subjects with hypertriglyceridemia: unique in vitro effects. Int J Cardiol. 2016;223:500–6. https://doi.org/10.1016/j.ijcard.2016.08.158.

    Article  PubMed  Google Scholar 

  37. 37.

    Chuengsamarn S, Rattanamongkolgul S, Phonrat B, Tungtrongchitr R, Jirawatnotai S. Reduction of atherogenic risk in patients with type 2 diabetes by curcuminoid extract: a randomized controlled trial. J Nutr Biochem. 2014;25:144–50. https://doi.org/10.1016/j.jnutbio.2013.09.013.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Ganjali S, Sahebkar A, Mahdipour E, Jamialahmadi K, Torabi S, Akhlaghi S, et al. Investigation of the effects of curcumin on serum cytokines in obese individuals: a randomized controlled trial. Sci World J. 2014;2014:1–6. https://doi.org/10.1155/2014/898361.

    CAS  Article  Google Scholar 

  39. 39.

    Panahi Y, Hosseini MS, Khalili N, Naimi E, Majeed M, Sahebkar A. Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: a randomized controlled trial and an updated meta-analysis. Clin Nutr. 2015;34:1101–8. https://doi.org/10.1016/j.clnu.2014.12.019.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Rahmani S, Asgary S, Askari G, et al. Treatment of non-alcoholic fatty liver disease with Curcumin: a randomized placebo-controlled trial. Phyther Res. 2016;30(9):1540–8. https://doi.org/10.1002/ptr.5659.

    CAS  Article  Google Scholar 

  41. 41.

    Kocher A, Bohnert L, Schiborr C, Frank J. Highly bioavailable micellar curcuminoids accumulate in blood, are safe and do not reduce blood lipids and inflammation markers in moderately hyperlipidemic individuals. Mol Nutr Food Res. 2016;60:1555–63. https://doi.org/10.1002/mnfr.201501034.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Panahi Y, Hosseini MS, Khalili N, Naimi E, Simental-Mendía LE, Majeed M, et al. Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: a post-hoc analysis of a randomized controlled trial. Biomed Pharmacother. 2016;82:578–82. https://doi.org/10.1016/j.biopha.2016.05.037.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Panahi Y, Hosseini MS, Khalili N, Naimi E, Soflaei SS, Majeed M, et al. Effects of supplementation with curcumin on serum adipokine concentrations: a randomized controlled trial. Nutrition. 2016;32:1116–22. https://doi.org/10.1016/j.nut.2016.03.018.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Panahi Y, Khalili N, Sahebi E, Namazi S, Simental-Mendía L, Majeed M, et al. Effects of Curcuminoids plus piperine on glycemic, hepatic and inflammatory biomarkers in patients with type 2 diabetes mellitus: a randomized double-blind placebo-controlled trial. Drug Res (Stuttg). 2018;68:403–9. https://doi.org/10.1055/s-0044-101752.

    CAS  Article  Google Scholar 

  45. 45.

    Vors C, Couillard C, Paradis ME, Gigleux I, Marin J, Vohl MC, et al. Supplementation with resveratrol and curcumin does not affect the inflammatory response to a high-fat meal in older adults with abdominal obesity: a randomized, placebo-controlled crossover trial. J Nutr. 2018;148:379–88. https://doi.org/10.1093/jn/nxx072.

    Article  PubMed  Google Scholar 

  46. 46.

    Egert S, Bosy-Westphal A, Seiberl J, Kürbitz C, Settler U, Plachta-Danielzik S, et al. Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study. Br J Nutr. 2009;102:1065–74. https://doi.org/10.1017/S0007114509359127.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Egert S, Boesch-Saadatmandi C, Wolffram S, Rimbach G, Müller MJ. Serum lipid and blood pressure responses to Quercetin vary in overweight patients by apolipoprotein E genotype. J Nutr. 2010;140:278–84. https://doi.org/10.3945/jn.109.117655.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Karlsen A, Paur I, Bøhn SK, Sakhi AK, Borge GI, Serafini M, et al. Bilberry juice modulates plasma concentration of NF-κB related inflammatory markers in subjects at increased risk of CVD. Eur J Nutr. 2010;49:345–55. https://doi.org/10.1007/s00394-010-0092-0.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Witte AV, Kerti L, Margulies DS, Floel A. Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J Neurosci. 2014;34:7862–70. https://doi.org/10.1523/JNEUROSCI.0385-14.2014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Brüll V, Burak C, Stoffel-Wagner B, Wolffram S, Nickenig G, Müller C, et al. Effects of a quercetin-rich onion skin extract on 24 h ambulatory blood pressure and endothelial function in overweight-to-obese patients with (pre-)hypertension: a randomised double-blinded placebo-controlled cross-over trial. Br J Nutr. 2015;114:1263–77. https://doi.org/10.1017/S0007114515002950.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Cialdella-Kam L, Nieman D, Knab A, Shanely R, Meaney M, Jin F, et al. A mixed flavonoid-fish oil supplement induces immune-enhancing and anti-inflammatory transcriptomic changes in adult obese and overweight women—a randomized controlled trial. Nutrients. 2016;8:277. https://doi.org/10.3390/nu8050277.

    CAS  Article  PubMed Central  Google Scholar 

  52. 52.

    Nieman DC, Ramamoorthy S, Kay CD, Goodman CL, Capps CR, Shue ZL, et al. Influence of ingesting a flavonoid-rich supplement on the metabolome and concentration of urine phenolics in overweight/obese women. J Proteome Res. 2017;16:2924–35. https://doi.org/10.1021/acs.jproteome.7b00196.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Brüll V, Burak C, Stoffel-Wagner B, Wolffram S, Nickenig G, Müller C, et al. No effects of quercetin from onion skin extract on serum leptin and adiponectin concentrations in overweight-to-obese patients with (pre-)hypertension: a randomized double-blinded, placebo-controlled crossover trial. Eur J Nutr. 2017;56:2265–75. https://doi.org/10.1007/s00394-016-1267-0.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Frühbeck G, Catalán V, Rodríguez A, Gómez-Ambrosi J. Adiponectin-leptin ratio: a promising index to estimate adipose tissue dysfunction. Relation with obesity-associated cardiometabolic risk. Adipocyte. 2018;7:57–62. https://doi.org/10.1080/21623945.2017.1402151.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Frühbeck G, Catalán V, Rodríguez A, Ramírez B, Becerril S, Salvador J, et al. Adiponectin-leptin ratio is a functional biomarker of adipose tissue inflammation. Nutrients. 2019;11:1–13. https://doi.org/10.3390/nu11020454.

    CAS  Article  Google Scholar 

  56. 56.

    Bakker GCM, Van Erk MJ, Pellis L, et al. An antiinflammatory dietary mix modulates inflammation and oxidative and metabolic stress in overweight men: a nutrigenomics approach. Am J Clin Nutr. 2010;91:1044–59. https://doi.org/10.3945/ajcn.2009.28822.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T, Goossens GH, et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 2011;14:612–22. https://doi.org/10.1016/j.cmet.2011.10.002.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Tomé-Carneiro J, Gonzálvez M, Larrosa M, Yáñez-Gascón MJ, García-Almagro FJ, Ruiz-Ros JA, et al. One-year consumption of a grape nutraceutical containing resveratrol improves the inflammatory and fibrinolytic status of patients in primary prevention of cardiovascular disease. Am J Cardiol. 2012;110:356–63. https://doi.org/10.1016/j.amjcard.2012.03.030.

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Bo S, Ciccone G, Castiglione A, Gambino R, de Michieli F, Villois P, et al. Anti-inflammatory and antioxidant effects of resveratrol in healthy smokers a randomized, double-blind, placebo-controlled, cross-over trial. Curr Med Chem. 2013;20:1323–31. https://doi.org/10.2174/0929867311320100009.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Militaru C, Donoiu I, Craciun A, Scorei ID, Bulearca AM, Scorei RI. Oral resveratrol and calcium fructoborate supplementation in subjects with stable angina pectoris: effects on lipid profiles, inflammation markers, and quality of life. Nutrition. 2013;29:178–83. https://doi.org/10.1016/j.nut.2012.07.006.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Tomé-Carneiro J, Gonzálvez M, Larrosa M, Yáñez-Gascón MJ, García-Almagro FJ, Ruiz-Ros JA, et al. Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: a triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease. Cardiovasc Drugs Ther. 2013;27:37–48. https://doi.org/10.1007/s10557-012-6427-8.

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Tomé-Carneiro J, Larrosa M, Yáñez-Gascón MJ, Dávalos A, Gil-Zamorano J, Gonzálvez M, et al. One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res. 2013;72:69–82. https://doi.org/10.1016/j.phrs.2013.03.011.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Faghihzadeh F, Adibi P, Rafiei R, Hekmatdoost A. Resveratrol supplementation improves inflammatory biomarkers in patients with nonalcoholic fatty liver disease. Nutr Res. 2014;34:837–43. https://doi.org/10.1016/j.nutres.2014.09.005.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Chachay VS, Macdonald GA, Martin JH, Whitehead JP, O'Moore–Sullivan TM, Lee P, et al. Resveratrol does not benefit patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2014;12:2092–103. https://doi.org/10.1016/j.cgh.2014.02.024.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Chen S, Zhao X, Ran L, Wan J, Wang X, Qin Y, et al. Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: a randomized controlled trial. Dig Liver Dis. 2015;47:226–32. https://doi.org/10.1016/j.dld.2014.11.015.

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Van der Made SM, Plat J, Mensink RP. Resveratrol does not influence metabolic risk markers related to cardiovascular health in overweight and slightly obese subjects: a randomized, placebo-controlled crossover trial. PLoS One. 2015;10:e0118393. https://doi.org/10.1371/journal.pone.0118393.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Di Renzo L, Marsella LT, Carraro A, et al. Changes in LDL oxidative status and oxidative and inflammatory gene expression after red wine intake in healthy people: a randomized trial. Mediat Inflamm. 2015;2015:317348–13. https://doi.org/10.1155/2015/317348.

    CAS  Article  Google Scholar 

  68. 68.

    Faghihzadeh F, Adibi P, Hekmatdoost A. The effects of resveratrol supplementation on cardiovascular risk factors in patients with non-alcoholic fatty liver disease: a randomised, double-blind, placebo-controlled study. Br J Nutr. 2015;114:796–803. https://doi.org/10.1017/s0007114515002433.

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Xue M, Weickert MO, Qureshi S, Kandala NB, Anwar A, Waldron M, et al. Improved glycemic control and vascular function in overweight and obese subjects by glyoxalase 1 inducer formulation. Diabetes. 2016;65:2282–94. https://doi.org/10.2337/db16-0153.

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Bo S, Ponzo V, Ciccone G, Evangelista A, Saba F, Goitre I, et al. Six months of resveratrol supplementation has no measurable effect in type 2 diabetic patients. A randomized, double blind, placebo-controlled trial. Pharmacol Res. 2016;111:896–905. https://doi.org/10.1016/j.phrs.2016.08.010.

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Kjær TN, Ornstrup MJ, Poulsen MM, Stødkilde-Jørgensen H, Jessen N, Jørgensen JOL, et al. No beneficial effects of resveratrol on the metabolic syndrome: a randomized placebo-controlled clinical trial. J Clin Endocrinol Metab. 2017;102:1642–51. https://doi.org/10.1210/jc.2016-2160.

    Article  PubMed  Google Scholar 

  72. 72.

    Van der Made SM, Plat J, Mensink RP. Trans-resveratrol supplementation and endothelial function during the fasting and postprandial phase: a randomized placebo-controlled trial in overweight and slightly obese participants. Nutrients. 2017;9:596. https://doi.org/10.3390/nu9060596.

    CAS  Article  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

G.C.C. and M.M.R. were responsible for the study concept. The search of the studies and the initial manuscript preparation were performed by G.C.C. G.C.C. and L.T.Y were responsible for the study analyses and design and wrote the manuscript. The manuscript was revised by L.T.Y., T.A.F.C., and M.M.R. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marcelo Macedo Rogero.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Corsi, G.C., Yoshime, L.T., Corrêa, T.A.F. et al. Bioactive compounds and inflammation: an overview. Nutrire 45, 14 (2020). https://doi.org/10.1186/s41110-020-00118-0

Download citation

Keywords

  • Catechin
  • Curcumin
  • Quercetin
  • Resveratrol
  • Inflammation