Passiflora edulis extract effects on probiotic and pathogenic modulation for healthier microbiota

Abstract

Purpose

The mechanism of adhesion of pathogenic bacteria in intestinal epithelial cells is essential in the process of colonization by these pathogens and subsequent intestinal infection. On the other hand, adhesion of probiotic bacteria can inhibit pathogen adhesion and infection by blocking specific receptors by competitive exclusion mechanisms and confers health benefits by other means. To find a safe product that would be able to promote, simultaneously, the adhesion of probiotic strains and inhibit the adhesion of pathogens was the main goal of this work.

Methods

We evaluated the effects of Passiflora edulis leaf aqueous extract on the adhesion of three probiotic (Lactobacillus rhamnosus, MB154; Lactobacillus casei, MB151; and Bifidobacterium lactis) and four pathogenic strains (Escherichia coli 11229, Listeria monocytogenes, Salmonella enteritidis, and Salmonella typhimurium) to Caco-2 monolayers, in vitro human intestinal epithelial model.

Results

Passiflora edulis extract (5 and 10 mg mL−1) increased the adhesion of all probiotic strains tested in a range from around 150 up to 880%, depending on the strain tested. For the pathogenic strains, on the other hand, the extract mainly decreased adhesion in significant rates for all tested microorganisms.

Conclusion

Passiflora edulis leaf extract is an interesting source of phenolic compounds that showed to be a potential microbiota-modulating product, stimulating the adhesion of probiotic bacteria, and inhibits the adhesion of pathogens strains. This extract has a great potential for the development of a symbiotic supplement, along with probiotic supplementation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

TSB:

Tryptic soy broth

MRS:

De Man, Rogosa, and Sharpe broth

PELE:

Passiflora edulis leaf extract

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

MTT:

3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide

PBS:

Phosphate-buffered saline

SDS:

Sodium dodecyl sulfate

DPBS:

Dulbecco’s phosphate buffered saline

ANOVA:

Analysis of variance

References

  1. 1.

    Yang J, Qian K, Wang C, Wu Y. Roles of probiotic lactobacilli inclusion in helping piglets establish healthy intestinal inter-environment for pathogen defense. Probiotics Antimicrob Proteins. 2018;10(2):243–50. https://doi.org/10.1007/s12602-017-9273-y.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Iacob S, Iacob DG, Luminos LM. Intestinal microbiota as a host defense mechanism to infectious threats. Front Microbiol. 2018;9. https://doi.org/10.3389/fmicb.2018.03328.

  3. 3.

    Wan MLY, Forsythe SJ, El-Nezami H. Probiotics interaction with foodborne pathogens: a potential alternative to antibiotics and future challenges. Crit Rev Food Sci Nutr. 2018;59:1–14. https://doi.org/10.1080/10408398.2018.1490885.

    CAS  Article  Google Scholar 

  4. 4.

    Servin AL, Coconnier M-H. Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clin Gastroenterol. 2003;17(5):741–54. https://doi.org/10.1016/S1521-6918(03)00052-0.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Monteagudo-Mera A, Rastall RA, Gibson GR, Charalampopoulos D, Chatzifragkou A. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl Microbiol Biotechnol. 2019;103(16):6463–72. https://doi.org/10.1007/s00253-019-09978-7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Prince T, McBain AJ, O'Neill CA. Lactobacillus reuteri protects epidermal keratinocytes from Staphylococcus aureus - induced cell death by competitive exclusion. Appl Environ Microbiol. 2012;78(15):5119–26. https://doi.org/10.1128/AEM.00595-12.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Nomoto K. Prevention of infections by probiotics. J Biosci Bioeng. 2005;100(6):583–92. https://doi.org/10.1263/jbb.100.583.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Woo J, Ahn J. Assessment of synergistic combination potential of probiotic and bacteriophage against antibiotic-resistant Staphylococcus aureus exposed to simulated intestinal conditions. Arch Microbiol. 2014;196(10):719–27. https://doi.org/10.1007/s00203-014-1013-z.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Mohanty D, Panda S, Kumar S, Ray P. In vitro evaluation of adherence and anti-infective property of probiotic Lactobacillus plantarum DM 69 against Salmonella enterica. Microb Pathog. 2019;126:212–7. https://doi.org/10.1016/j.micpath.2018.11.014.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Levent G, Schlochtermeier A, Ives SE, Norman KN, Lawhon SD, Loneragan GH, et al. Population dynamics of Salmonella enterica following single dose metaphylactic antibiotic use within cohorts of beef cattle followed to slaughter. Appl Environ Microbiol. 2019;85. https://doi.org/10.1128/AEM.01386-19.

  11. 11.

    Karp BE, Campbell D, Chen JC, Folster JP, Friedman CR. Plasmid-mediated quinolone resistance in human non-typhoidal Salmonella infections: an emerging public health problem in the United States. Zoonoses Public Health. 2018;65(7):838–49. https://doi.org/10.1111/zph.12507.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Bhattacharya A, Nsonwu O, Johnson A, Hope R. Estimating the incidence and 30-day all-cause mortality rate of Escherichia coli bacteraemia in England by 2020/21. J Hosp Infect. 2018;98(3):228–31. https://doi.org/10.1016/j.jhin.2017.09.021.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Piatek J, Sommermeyer H, Bernatek M, Ciechelska-Rybarczyk A, Oleskow B, Mikkelsen LS, et al. Persistent infection by Salmonella enterica serovar Typhimurium: are synbiotics a therapeutic option?–a case report. Benefic Microbes. 2019;10(2):211–7. https://doi.org/10.3920/BM2018.0080.

    CAS  Article  Google Scholar 

  14. 14.

    Fuller R. Probiotics in human medicine. Gut. 1991;32(4):439–42. https://doi.org/10.1136/gut.32.4.439.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Salaheen S, Jaiswal E, Joo J, Peng M, Ho R, OConnor D, et al. Bioactive extracts from berry byproducts on the pathogenicity of Salmonella Typhimurium. Int J Food Microbiol. 2016;237:128–35. https://doi.org/10.1016/j.ijfoodmicro.2016.08.027.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Volstatova T, Marsik P, Rada V, Geigerova M, Havlik J. Effect of apple extracts and selective polyphenols on the adhesion of potential probiotic strains of Lactobacillus gasseri R and Lactobacillus casei FMP. J Funct Foods. 2017;35:391–7. https://doi.org/10.1016/j.jff.2017.06.005.

    CAS  Article  Google Scholar 

  17. 17.

    Ayres AS, Santos WB, Junqueira-Ayres DD, Costa GM, Ramos FA, Castellanos L, et al. Monoaminergic neurotransmission is mediating the antidepressant-like effects of Passiflora edulis Sims fo edulis. Neurosci lett. 2017;660:79–85. https://doi.org/10.1016/j.neulet.2017.09.010.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Narain N, Shanmugam S, de Souza Araújo AA. Antioxidant, antimicrobial, analgesic, anti-inflammatory and antipyretic effects of bioactive compounds from Passiflora species. In: Medicinal Plants: Springer; 2019. p. 243–74. https://doi.org/10.1007/978-3-030-31269-5_11.

  19. 19.

    Hameed IH, Cotos MRC, Hadi MY. Antimicrobial, antioxidant, hemolytic, anti-anxiety, and antihypertensive activity of Passiflora species. Res J Pharm Technol. 2017;10:4079–84. https://doi.org/10.5958/0974-360X.2017.00739.9.

    Article  Google Scholar 

  20. 20.

    Slaytor M, McFarlane I. The biosynthesis and metabolism of harman in Passiflora edulis—I: the biosynthesis of harman. Phytochemistry. 1968;7(4):605–11. https://doi.org/10.1016/S0031-9422(00)88235-7.

    CAS  Article  Google Scholar 

  21. 21.

    Yoshikawa K, Katsuta S, Mizumori J, Arihara S. Four cycloartane triterpenoids and six related saponins from Passiflora edulis. J Nat Prod. 2000;63(9):1229–34. https://doi.org/10.1021/np000126.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Rudnicki M, de Oliveira MR, da Veiga PT, Reginatto FH, Dal-Pizzol F, Moreira JCF. Antioxidant and antiglycation properties of Passiflora alata and Passiflora edulis extracts. Food Chem. 2007;100(2):719–24. https://doi.org/10.1016/j.foodchem.2005.10.043.

    CAS  Article  Google Scholar 

  23. 23.

    Zibadi S, Watson RR. Passion fruit (Passiflora edulis). Evid Based Integr Med. 2004;1(3):183–7. https://doi.org/10.2165/01197065-200401030-00005.

    Article  Google Scholar 

  24. 24.

    Bao N, Chen F, Dai D. The regulation of host intestinal microbiota by polyphenols in the development and prevention of chronic kidney disease. Front Immunol. 2020;10:2981. https://doi.org/10.3389/fimmu.2019.02981.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Wiciński M, Gębalski J, Mazurek E, Podhorecka M, Śniegocki M, Szychta P, et al. The influence of polyphenol compounds on human gastrointestinal tract microbiota. Nutrients. 2020;12(2):350. https://doi.org/10.3390/nu12020350.

    Article  PubMed Central  Google Scholar 

  26. 26.

    Cazarin CB, da Silva JK, Colomeu TC, Batista ÂG, Vilella CA, Ferreira AL, et al. Passiflora edulis peel intake and ulcerative colitis: approaches for prevention and treatment. Exp Biol Med. 2014;239(5):542–51. https://doi.org/10.1177/1535370214525306.

    CAS  Article  Google Scholar 

  27. 27.

    Cazarin CBB, da Silva JK, Colomeu TC, Batista ÂG, Meletti LMM, Paschoal JAR, et al. Intake of Passiflora edulis leaf extract improves antioxidant and anti-inflammatory status in rats with 2, 4, 6-trinitrobenzenesulphonic acid induced colitis. J Funct Foods. 2015;17:575–86. https://doi.org/10.1016/j.jff.2015.05.034.

    CAS  Article  Google Scholar 

  28. 28.

    do Carmo MCL, Martins IM, Magalhães AER, Júnior MRM, Macedo JA. Passion fruit (Passiflora edulis) leaf aqueous extract ameliorates intestinal epithelial barrier dysfunction and reverts inflammatory parameters in Caco-2 cells monolayer. Food Res Int. 2020;133:109162. https://doi.org/10.1016/j.foodres.2020.109162.

    CAS  Article  Google Scholar 

  29. 29.

    Da Silva JK, Cazarin CBB, Colomeu TC, Batista ÂG, Meletti LM, Paschoal JAR, et al. Antioxidant activity of aqueous extract of passion fruit (Passiflora edulis) leaves: in vitro and in vivo study. Food Res Int. 2013;53(2):882–90. https://doi.org/10.1016/j.foodres.2012.12.043.

    CAS  Article  Google Scholar 

  30. 30.

    Volstatova T, Havlik J, Potuckova M, Geigerova M. Milk digesta and milk protein fractions influence the adherence of Lactobacillus gasseri R and Lactobacillus casei FMP to human cultured cells. Food Funct. 2016;7(8):3531–8. https://doi.org/10.1039/c6fo00545d.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Hervert-Hernández D, Pintado C, Rotger R, Goñi I. Stimulatory role of grape pomace polyphenols on Lactobacillus acidophilus growth. Int J Food Microbiol. 2009;136(1):119–22. https://doi.org/10.1016/j.ijfoodmicro.2009.09.016.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Huber B, Eberl L, Feucht W, Polster J. Influence of polyphenols on bacterial biofilm formation and quorum-sensing. Z Naturforsch C. 2003;58(11–12):879–84. https://doi.org/10.1515/znc-2003-11-1224.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Almajano MP, Carbo R, Jiménez JAL, Gordon MH. Antioxidant and antimicrobial activities of tea infusions. Food Chem. 2008;108(1):55–63. https://doi.org/10.1016/j.foodchem.2007.10.040.

    CAS  Article  Google Scholar 

  34. 34.

    Campos F, Couto J, Hogg T. Influence of phenolic acids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii. J Appl Microbiol. 2003;94(2):167–74. https://doi.org/10.1046/j.1365-2672.2003.01801.x.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Gareau MG, Sherman PM, Walker WA. Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol. 2010;7(9):503–14. https://doi.org/10.1038/nrgastro.2010.117.

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Molina-Tijeras JA, Gálvez J, Rodríguez-Cabezas ME. The immunomodulatory properties of extracellular vesicles derived from probiotics: a novel approach for the management of gastrointestinal diseases. Nutrients. 2019;11(5):1038. https://doi.org/10.3390/nu11051038.

    CAS  Article  PubMed Central  Google Scholar 

  37. 37.

    Guandalini S, Sansotta N. Probiotics in the treatment of inflammatory bowel disease. 2019. https://doi.org/10.1007/5584_2018_319.

  38. 38.

    Ohland CL, MacNaughton WK. Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol. 2010;298(6):G807–G19. https://doi.org/10.1152/ajpgi.00243.2009.

    CAS  Article  Google Scholar 

  39. 39.

    Gram L, Grossart H-P, Schlingloff A, Kiørboe T. Possible quorum sensing in marine snow bacteria: production of acylated homoserine lactones by Roseobacter strains isolated from marine snow. Appl Environ Microbiol. 2002;68(8):4111–6. https://doi.org/10.1128/aem.68.8.4111-4116.2002.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Laparra JM, Sanz Y. Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol Res. 2010;61(3):219–25. https://doi.org/10.1016/j.phrs.2009.11.001.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Puupponen-Pimiä R, Nohynek L, Hartmann-Schmidlin S, Kähkönen M, Heinonen M, Määttä-Riihinen K, et al. Berry phenolics selectively inhibit the growth of intestinal pathogens. J Appl Microbiol. 2005;98(4):991–1000. https://doi.org/10.1111/j.1365-2672.2005.02547.x.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Chung K-T, Lu Z, Chou M. Mechanism of inhibition of tannic acid and related compounds on the growth of intestinal bacteria. Food Chem Toxicol. 1998;36(12):1053–60. https://doi.org/10.1016/S0278-6915(98)00086-6.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Freestone PP, Walton NJ, Haigh RD, Lyte M. Influence of dietary catechols on the growth of enteropathogenic bacteria. Int J Food Microbiol. 2007;119(3):159–69. https://doi.org/10.1016/j.ijfoodmicro.2007.07.039.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Wang H, Zhong Z, Luo Y, Cox E, Devriendt B. Heat-stable enterotoxins of enterotoxigenic Escherichia coli and their impact on host immunity. Toxins. 2019;11(1):24. https://doi.org/10.3390/toxins11010024.

    CAS  Article  PubMed Central  Google Scholar 

  45. 45.

    Mirsepasi-Lauridsen HC, Vallance BA, Krogfelt KA, Petersen AM. Escherichia coli pathobionts associated with inflammatory bowel disease. Clin Microbiol Rev. 2019;32(2):e00060–18. https://doi.org/10.1128/CMR.00060-18.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Semenza JC, Menne B. Climate change and infectious diseases in Europe. Lancet Infect Dis. 2009;9(6):365–75. https://doi.org/10.1016/S1473-3099(09)70104-5.

    Article  PubMed  Google Scholar 

  47. 47.

    Burke D, Axon A. Adhesive Escherichia coli in inflammatory bowel disease and infective diarrhoea. Bmj. 1988;297(6641):102–4. https://doi.org/10.1136/bmj.297.6641.102.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Giaffer M, Holdsworth C, Duerden B. Virulence properties of Escherichia coli strains isolated from patients with inflammatory bowel disease. Gut. 1992;33(5):646–50. https://doi.org/10.1136/gut.33.5.646.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Keighley M, Arabi Y, Dimock F, Burdon D, Allan R, Alexander-Williams J. Influence of inflammatory bowel disease on intestinal microflora. Gut. 1978;19(12):1099–104. https://doi.org/10.1136/gut.19.12.1099.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Ilnyckyj A, Greenberg H, Bernstein C. Escherichia coli O157: H7 infection mimicking Crohn’s disease. Gastroenterology. 1997;112(3):995–9. https://doi.org/10.1053/gast.1997.v112.pm9041263.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Darfeuille-Michaud A, Neut C, Barnich N, Lederman E, Di Martino P, Desreumaux P, et al. Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn’s disease. Gastroenterology. 1998;115(6):1405–13. https://doi.org/10.1016/S0016-5085(98)70019-8.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Mirsepasi-Lauridsen HC, Halkjaer SI, Mortensen EM, Lydolph MC, Nordgaard-Lassen I, Krogfelt KA, et al. Extraintestinal pathogenic Escherichia coli are associated with intestinal inflammation in patients with ulcerative colitis. Sci Rep. 2016;6:31152. https://doi.org/10.1038/srep31152.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Taylor-Robinson S, Miles R, Whitehead A, Dickinson R. Salmonella infection and ulcerative colitis. Lancet. 1989;333(8647):1145–7. https://doi.org/10.1155/2016/5854285.

    CAS  Article  Google Scholar 

  54. 54.

    Liu Y, Van Kruiningen HJ, West AB, Cartun RW, Cortot A, Colombel J-F. Immunocytochemical evidence of Listeria, Escherichia coli, and Streptococcus antigens in Crohn’s disease. Gastroenterology. 1995;108(5):1396–404. https://doi.org/10.1016/0016-5085(95)90687-8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Durigan JF, Yamanaka LH. Aproveitamento de subprodutos da fabricação do suco de maracujá. In: Ruggiero C, editor. Cultura do maracujazeiro. Ribeirão Preto: Legis Summa; 1987. p. 202–9.

    Google Scholar 

  56. 56.

    Guimarães SF, Lima IM, Modolo LV. Phenolic content and antioxidant activity of parts of Passiflora edulis as a function of plant developmental stage. Acta Bot Bras. 2020;34(1):74–82. https://doi.org/10.1590/0102-33062019abb0148.

    Article  Google Scholar 

  57. 57.

    Akanbi BO, Bodunrin OD, Olayanju S. Phytochemical screening and antibacterial activity of Passiflora edulis. Researcher. 2011;3(5):9–12.

    Google Scholar 

  58. 58.

    Hervert-Hernandez D, Goñi I. Dietary polyphenols and human gut microbiota: a review. Food Rev Int. 2011;27(2):154–69. https://doi.org/10.1080/87559129.2010.535233.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES), and Conselho Nacional de Pesquisa e Tecnologia (CNPq), and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

Funding

This research counted on the financial support of the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001; CNPq (403328/2016-0; 301108/2016-1) and FAPESP (2015/50333-1).

Author information

Affiliations

Authors

Contributions

MCLC contributed to the experimental design and data analysis. IMM contributed to the experimental design and data analysis and reviewed the manuscript. PMM contributed to the experimental design and data analysis. GAM contributed to the experimental design. JAM contributed to the data analysis and wrote and reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mônica Cristina Lopes do Carmo.

Ethics declarations

Ethics approval

This study was approved by Conselho de Gestão do Patrimônio Genético-CGEN (registration no. ADE06F0).

Competing interests

The authors declare that they have no competing interests.

Code availability

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

do Carmo, M.C.L., Martins, I.M., de Paula Menezes Barbosa, P. et al. Passiflora edulis extract effects on probiotic and pathogenic modulation for healthier microbiota. Nutrire 45, 15 (2020). https://doi.org/10.1186/s41110-020-00117-1

Download citation

Keywords

  • Caco-2 cells
  • Passiflora edulis leaf
  • Bacterial adhesion
  • Lactobacillus spp.
  • Escherichia coli
  • Diet-microbiota interactions