Asymptotically almost periodic solutions for certain differential equations with piecewise constant arguments

Abstract

It is well known that differential equations with piecewise constant arguments is a class of functional differential equations, which has fascinated many scholars in recent years. These delay differential equations have been successfully applied to diverse models in real life, especially in biology, physics, economics, etc. In this work, we are interested in the existence and uniqueness of asymptotically almost periodic solution for certain differential equation with piecewise constant arguments. Due to the particularity of the equations, we cannot use the traditional method to convert it into the difference equation with exponential dichotomy. Through constructing Cauchy matrix of the investigated system to find the corresponding Green matrix of the difference equation, we need the concept of exponential dichotomy and the Banach contraction fixed point theorem of the corresponding system. Then we give some sufficient conditions to obtain the existence and uniqueness of asymptotically almost periodic solutions for these systems.

Introduction

In recent years, the delay differential equations have been successfully applied to various models in many fields, especially in biology, physics, and economy.

In 1977, Myshkis [29] proposed a differential equation with noncontinuous variables

$$x'(t)=g\bigl(t,x(t),x\bigl(h(t)\bigr)\bigr), $$

where h is a deviated function with piecewise constant arguments such as \(h(t)=[t]\) or \(h(t)=2[\frac{t+1}{2}]\), \([\cdot]\) denotes the largest integer function. These equations are called differential equations with piecewise constant arguments, abbreviated as DEPCA. The research work on DEPCA was first initiated by Shah and Wiener in 1983 [39]. A year later, Cooke and Wiener studied DEPCA with time delay in their work [13]. Because the differential equation with piecewise constant arguments describes the hybrid dynamical system (continuous and discrete combination) and combines the properties of differential equations and difference equations, so the differential equation with piecewise constant arguments is more abundant than general ordinary differential equation, and it is more difficult to study. DEPCA has shown important applications in medicine, physics, and other scientific fields, which is why DEPCA has attracted so much attention (see [5, 7, 12, 14, 15, 24, 28, 32, 37, 38, 43, 45, 48, 50] and the references therein). Most of these works focused on some qualitative properties of the solutions, such as the existence, uniqueness, boundedness, periodicity, almost periodicity, pseudo-almost periodicity, stability, oscillation, and so on. (see [1, 5, 6, 811, 18, 22, 23, 2527, 3033, 44, 50, 53, 56, 60, 62, 63, 66] and the references therein).

Compared with the almost periodic solution of the differential equation, the corresponding results of the asymptotically almost periodic solutions are very few. In recent years, the existence of asymptotically almost periodic solution is one of the topics with great interest to many mathematicians in the theory of differential equations (see [16, 17, 19, 32, 35, 4042, 52, 54, 55, 5759, 61, 67] and the references therein). Moreover, asymptotically almost periodic function is a generalization of almost periodic function, so it is more general to discuss the asymptotically almost periodic solutions of differential equations in practical problems.

In 2015, Samuel Castillo [8] studied the following systems:

$$ y{'}(t)=A(t)y(t)+B(t)y\bigl(\gamma^{0}(t) \bigr)+f(t),\quad t\in R $$
(1.1)

and

$$ y{'}(t)=A(t)y(t)+B(t)y\bigl(\gamma^{0}(t) \bigr)+F\bigl(t, y_{\gamma}(t)\bigr),\quad t\in R, $$
(1.2)

where

$$\begin{gathered} y_{\gamma}(t)=\bigl(y\bigl(\gamma^{p_{1}}(t)\bigr),y\bigl( \gamma^{p_{2}}(t)\bigr),\ldots, y\bigl(\gamma ^{p_{l}}(t)\bigr) \bigr), \\ p_{1}, p_{2},\ldots, p_{l}\in N\cup\{0\},\end{gathered} $$

\(\gamma^{p_{i}}(t)\), \(i=1, 2, \ldots, l\), denotes step functions. Equations (1.1) and (1.2) can be regarded a perturbation of the following linear homogeneous equation:

$$ z{'}(t)=A(t)z(t)+B(t)z\bigl(\gamma^{0}(t) \bigr), $$
(1.3)

where the matrices \(A, B: R\rightarrow R^{q\times q}\) and \(f: R\rightarrow R^{q}\) is a continuous function, \(F: R\times R^{q}\rightarrow R^{q}\) is a continuous function and satisfies the Lipschitz condition (see \((H_{5})\)). For \(p\in Z\), let \(\gamma^{p}: R\rightarrow R\) be a step function such that \(\frac{\gamma ^{p}}{J_{n}}=t_{n-p}\), where \(J_{n}=[t_{n}, t_{n+1}]\) for all \(n\in Z\). The author Samuel Castillo [8] gave some sufficient conditions to obtain the existence and uniqueness of the almost periodic solutions for systems (1.1) and (1.2).

Motivated by the paper of Castillo [8], we study the above linear nonhomogeneous system (1.1) and nonlinear nonhomogeneous system (1.2) and get some sufficient conditions of the existence and uniqueness for asymptotically almost periodic solutions. Our results generalize the results in [8].

In order to study equation (1.1), we first study the linear inhomogeneous DEPCA

$$ y{'}(t)=A(t)y(t)+B(t)y\bigl([t]\bigr)+f(t),\quad t\in R. $$
(1.4)

\(A(\cdot)\) is an almost periodic matrix-valued function, \(B(\cdot)\) is an almost periodic matrix-valued function or an asymptotically almost periodic matrix-valued function, f is an asymptotically almost periodic function.

By the variation of constants formula, a solution y of equation (1.4) is defined on R and satisfies the following equation:

$$ y(t)=\biggl[\varPhi(t, n)+ \int_{n}^{t}\varPhi(t, u)B(u)\,du\biggr]y(n)+ \int _{n}^{t}\varPhi(t, u)f(u)\,du, $$
(1.5)

where \(\varPhi(t, s)=\varPhi(t)\varPhi^{-1}(s)\), and \(\varPhi(t)\) is a fundamental matrix of the following system:

$$ x{'}(t)=A(t)x(t) $$
(1.6)

in \([n, n+1]\) for all \(n\in Z\). Furthermore, it satisfies \(\varPhi (0)=I\), where I is an identity matrix.

The solution y is continuous on R, and by taking \(t\rightarrow(n+1)^{-}\), we get the difference system

$$ y(n+1)=C(n)y(n)+h(n),\quad n\in Z, $$
(1.7)

where

$$\begin{gathered} C(n)=\varPhi(n+1, n)+ \int_{n}^{n+1}\varPhi(n+1, u)B(u)\,du, \\ h(n)= \int_{n}^{n+1}\varPhi(n+1, u)f(u)\,du.\end{gathered} $$

By (1.5), \(y=y(t)\) is a solution of (1.4) defined on R if and only if the matrix

$$ I+ \int_{\tau}^{t}\varPhi(\tau, u)B(u)\,du $$
(1.8)

is invertible for all \(n\in Z\) and \(t, \tau\in[n, n+1]\), where I is an identity matrix (see [4, 5, 35, 36]). We can obtain the following fundamental matrix:

$$Z(t, n)=\varPhi(t, n)+ \int_{n}^{t}\varPhi(t, u)B(u)\,du, $$

which is also invertible for all \(n\in Z\) and \(t\in[n, n+1]\). Therefore

$$C(n)=Z(n+1, n) $$

is also invertible.

Note that the discrete system

$$ x(n+1)=C(n)x(n),\quad n\in Z $$
(1.9)

can be obtained by the linear homogeneous system

$$ x{'}(t)=A(t)x(t)+B(t)x\bigl([t]\bigr),\quad t\in R. $$
(1.10)

The discrete solution of (1.7) is the restriction on Z of the continuous solution of (1.4), so these two equations are closely related, which reflects the mixed characteristics of DEPCA. Papaschinopoulos [32, 33] studied the DEPCA and obtained the result on the discrete system with exponential dichotomy and the concept of the corresponding exponential dichotomy. This is a traditional method for studying almost periodic solution or asymptotically almost periodic solution of differential equation.

In this work, we consider a more general \(y_{\gamma}\) and emphasize the behavior of solutions on the points \(t_{n}\). In this case, the concept of traditional exponential dichotomy cannot be directly extended to (1.3). Therefore, we can only define the concept of the corresponding exponential dichotomy of (1.3) by other methods. After that, we can further prove the existence and uniqueness of asymptotically almost periodic solution for linear inhomogeneous system (1.1) (see Theorem 3.3). In addition, by using exponential dichotomy and the Banach contraction fixed point theorem, some sufficient conditions for the existence and uniqueness of asymptotically almost periodic solution for nonlinear nonhomogeneous system (1.2) are obtained (see Theorem 3.5).

The rest of this article is organized as follows: Sect. 2 provides the main definitions, assumptions, propositions, and lemmas that will be used. Section 3 is devoted to the main results of this work, that is, the existence and uniqueness of asymptotically almost periodic solution for system (1.1) and system (1.2).

Some definitions and lemmas

In this section, we present some useful definitions, propositions, and lemmas. Before that, the main assumptions of this section are given:

\((H_{1})\):

A and B are almost periodic functions.

\((H_{2})\):

A is an almost periodic function and B is an asymptotically almost periodic function.

\((H_{3})\):

Fix a real-valued sequence \(\{t_{n}\}_{n=-\infty}^{+\infty}\) such that \(t_{n}< t_{n+1}\) and \(t_{n}\rightarrow\pm\infty\) as \(n\rightarrow\pm \infty\). And \(\{t_{n}^{(k)}\}_{n=-\infty}^{+\infty}\) is equipotentially almost periodic for all \(k\in Z\), where \(t_{n}^{(k)}=t_{n+k}-t_{n}\) (see Definition 2.6).

\((H_{4})\):

f is a piecewise asymptotically almost periodic function, namely

$$T(f, \varepsilon)=\biggl\{ \tau\in R: \bigl\vert f(t+\tau)-f(t) \bigr\vert \leq\varepsilon, \forall t\in R-\biggl(\bigcup_{n\in Z}[t_{n}- \varepsilon, t_{n}+\varepsilon]\biggr)\biggr\} $$

is relatively dense on R for all \(\varepsilon>0\). And there is \(\delta _{\varepsilon}>0\) such that \(|f(t{'}+\tau{'})-f(t{'})|\leq\varepsilon \) if \(\tau{'}\in R: |\tau{'}|\leq\delta_{\varepsilon}\) and \(t{'}, t{'}+\tau{'}\) is in one of the intervals \([t_{n}, t_{n+1}]\).

\((H_{5})\):

F is uniformly almost periodic on W and satisfies the Lipschitz condition, that is, there is \(L>0\) such that

$$ \bigl\vert F(t, x_{1},\ldots,x_{l})-F(t, y_{1},\ldots,y_{l}) \bigr\vert \leq L\sum _{j=1}^{l} \vert x_{j}-y_{j} \vert $$
(2.1)

for all \(t\in R\) and \((x_{1},\ldots,x_{l}), (y_{1},\ldots,y_{l})\in W\), where W is a compact subset in \(R^{q}\).

Definition 2.1

([20])

The set \(E\subseteq R\) is called relatively dense if there is a real number \(l>0\) such that \(E\cap[m, m+l]\neq\varnothing\) for all \(m\in R\).

Definition 2.2

([20])

The \(f: R^{q} \rightarrow R^{q}\) is said to be an almost periodic function if the ε-translation set of f

$$ T(f, \varepsilon)=\bigl\{ \tau\in R^{q}: \bigl\vert f(t+\tau)-f(t) \bigr\vert < \varepsilon, \forall t\in R^{q}\bigr\} $$

is relatively dense on R for all \(\varepsilon>0\), where τ is ε-period of f. We use \(\operatorname{AP}(R^{q}, R^{q})\) to represent all of these functions.

We use \(C_{0}(R^{q})\) to represent the following set:

$$C_{0}\bigl(R^{q}\bigr)=\Bigl\{ \varphi\in C \bigl(R^{q}\bigr):\lim_{ \vert t \vert \rightarrow+\infty} \bigl\Vert \varphi (t) \bigr\Vert =0\Bigr\} . $$

Definition 2.3

([65])

The \(f: R^{q} \rightarrow R^{q}\) is said to be an asymptotically almost periodic function if \(f=g+\varphi\), where \(g\in \operatorname{AP}(R^{q}, R^{q})\), \(\varphi\in C_{0}(R^{q})\). We use \(\operatorname{AAP}(R^{q}, R^{q})\) to represent all of these functions.

We use \(C_{0}S(Z, R^{q})\) to represent the following set:

$$C_{0}S\bigl(Z, R^{q}\bigr)=\Bigl\{ \varphi(n):\lim _{ \vert n \vert \rightarrow+\infty} \bigl\Vert \varphi (n) \bigr\Vert =0\Bigr\} . $$

Definition 2.4

([65])

A sequence \(x: Z\rightarrow R^{q}\) is said to be almost periodic if the ε-translation set of x

$$ T(x, \varepsilon)=\bigl\{ \tau\in Z: \bigl\vert x(n+\tau)-x(n) \bigr\vert < \varepsilon, \forall n\in Z\bigr\} $$

is relatively dense on Z for all \(\varepsilon>0\), where Z denotes the set of integers. We use \(\operatorname{APS}(Z, R^{q})\) to represent all of these sequences.

Definition 2.5

([65])

The bounded sequence \(x: Z\rightarrow R^{q}\) is said to be asymptotically almost periodic if \(x=x_{1}+x_{2}\), where \(x_{1}\in \operatorname{APS}(Z, R^{q})\), \(x_{2}\in C_{0}S(Z, R^{q})\). We use \(\operatorname{AAPS}(Z, R^{q})\) to represent all of these sequences.

Definition 2.6

([8])

We say that \(\{t_{n}^{(k)}\}_{n=-\infty}^{+\infty}\) is equipotentially almost periodic for all \(k\in Z\) if the set

$$ \bigcap_{k\in N}\bigl\{ T\in Z: \bigl\vert t_{T+n}^{(k)}-t_{n}^{(k)} \bigr\vert \leq\varepsilon, \text{for all }n\in Z\bigr\} $$

is relatively dense for all \(\varepsilon>0\).

Definition 2.7

([32])

Let \(C(n)\) be a \(q\times q\) matrix and invertible, we say that the linear difference equation

$$ y(n+1)=C(n)y(n) $$
(2.2)

with exponential dichotomy on Z for all \(n\in Z\). If there are positive constants \(K, \alpha>0\) and projection P (\(P^{2}=P\)) such that

$$\begin{aligned} & \bigl\vert Y(n)PY^{-1}(m) \bigr\vert \leq K e^{-\alpha(n-m)},\quad n\geq m, \\ & \bigl\vert Y(n) (I-P)Y^{-1}(m) \bigr\vert \leq K e^{-\alpha(m-n)},\quad n< m, \end{aligned}$$
(2.3)

where \(Y(n)\) is a fundamental matrix of (2.2) and satisfies \(Y(0)=I\).

Lemma 2.1

([64])

Assume that\(A(t)\in \operatorname{AP}(R^{q}, R^{q})\), \(B(t)\in \operatorname{AAP}(R^{q}, R^{q})\), \(f(t)\in \operatorname{AAP}(R^{q})\), and the following equation

$$ y{'}(t)=A(t)y(t)+B(t)y\bigl([t]\bigr)+f(t),\quad t\in R $$

with exponential dichotomy holds. Then the equation has a unique solution\(y(t)\in \operatorname{AAP}(R^{q})\).

Lemma 2.2

([64])

If\(A(t)\), \(B(t)\), \(f(t)\)are almost periodic functions, then there is a positive number\(M>0\)such that\(\max\{|A(t)|, |B(t)|, |f(t)|\}\leq M\),

  1. (1)

    there exists\(k_{0}>0\)such that

    $$\bigl\vert X(t)X^{-1}(s) \bigr\vert \leq k_{0},\quad 0< t-s\leq1; $$
  2. (2)

    if\(\tau\in T(A, \varepsilon)\), then

    $$\bigl\vert X(t+\tau)X^{-1}(s+\tau)-X(t)X^{-1}(s) \bigr\vert \leq k_{0}\varepsilon e^{M},\quad 0< t-s\leq1, $$

    where\(X(t)\)is a fundamental matrix of the equation

    $$ x{'}=A(t)x $$

    and satisfies\(X(0)=I\), \(A=A(t)\).

Lemma 2.3

([64])

Let\(A(t)\)be an almost periodic function, \(X(t)\)is a fundamental matrix of the equation\(x{'}=A(t)x\), then\(\{X(n+1)X^{-1}(n): n\in Z\}\)is an almost periodic sequence.

Lemma 2.4

([8])

Ifθis defined as\(\theta=\sup_{n\in Z}(t_{n+1}-t_{n})\), and\(K_{0}=\exp(|A|_{\infty}\theta)\), then\(|X(t, s)|\leq\sqrt{q}K_{0}\)for all\(t, s\in R\)satisfying\(|s-t|\leq \theta\).

Lemma 2.5

([34])

Assume that\((H_{3})\)holds. Let\(\varepsilon>0\), \(\varGamma\subseteq \varGamma_{\varepsilon}\), \(\varGamma\neq\emptyset\)and\(P\subseteq\bigcup_{r\in\varGamma}P_{r}(\varepsilon)\)be such that\(P\cap P_{r}(\varepsilon)\neq\emptyset\)for all\(r\in\varGamma\). Then the setΓis relatively dense if and only ifPis relatively dense.

Lemma 2.6

([8])

  1. (a)

    If\(f_{1}\), \(f_{2}\)are functions satisfying\((H_{4})\), then given arbitrarily\(\varepsilon>0\), \(\varGamma_{\varepsilon}\cap T(f_{1}, \varepsilon)\cap T(f_{2}, \varepsilon)\)is relatively dense.

  2. (b)

    If\(\{g_{1}(n)\}_{n=-\infty}^{+\infty}\)and\(\{g_{2}(n)\}_{n=-\infty }^{+\infty}\)are almost periodic sequences, then given arbitrarily\(\varepsilon>0\), \(P_{\varepsilon}\cap T(g_{1}, \varepsilon)\cap T(g_{2}, \varepsilon)\)is relatively dense.

Lemma 2.7

([8])

Considerθdefined in Lemma2.4. Let\(\varepsilon>0\), \(\tau \in\varGamma_{\varepsilon}\cap T(A, \varepsilon)\), and\(p\in P_{\tau}(\varepsilon)\). Then there is\(K'>0\)such that, for all\(n\in Z\),

  1. (a)

    \(|X(t_{n+p+1}, u+\tau)-X(t_{n+1}, u)|\leq K'\varepsilon\)for all\(u\in[t_{n}, t_{n+1}]\);

  2. (b)

    \(|X(t+\tau, t_{n+p})-X(t, t_{n})|\leq K'\varepsilon\)for all\(t\in [t_{n}, t_{n+1}]\);

  3. (c)

    \(|X(t+\tau, s+\tau)-X(t, s)|\leq K'\varepsilon\)for all\(s, t\in R: |t-s|\leq\theta\);

  4. (d)

    \(|X(t_{n+p+1}, t_{n+p})-X(t_{n+1}, t_{n})|\leq K'\varepsilon\).

Main results

The existence and uniqueness of the asymptotically almost periodic solution for system (1.1)

In this section, we consider a more general \(y_{\gamma}\), where

$$ y_{\gamma}(t)=\bigl(y\bigl(\gamma^{p_{1}}(t)\bigr),y \bigl(\gamma^{p_{2}}(t)\bigr),\ldots, y\bigl(\gamma ^{p_{l}}(t) \bigr)\bigr), $$

\(\gamma^{p_{i}}(t)\), \(i=1, 2, \ldots, l\), denotes step functions. This definition of exponential dichotomy has been adapted from (1.3) (Definition2.2) in the paper of Papashinopoulos [32], there \(\gamma=[\cdot]\). Here, it is an exponential dichotomy for (2.2), which is not obvious to be extended for (1.3) in [32] in terms of \(Z(t, s)\) except for the cases where the projection for exponential dichotomy commutes with \(A(t)\) and \(B(t)\). Therefore, we try to convert the exponential dichotomy of the corresponding (1.3) in [32] by other methods.

Next, we study a Cauchy operator for the linear part of (1.3).

Let X be a fundamental matrix of the following linear homogeneous system:

$$ x{'}=A(t)x $$
(3.1)

and \(X(t, s)=X(t)X(s)^{-1}\). Now we follow [4] to say what is the Cauchy matrix for (1.3).

For \(n\in Z\), \(t\in J_{n}\) satisfies \(t\geq s\). Let \(Z_{n}(t)=X(t, t_{n})J_{n}(t)\), where

$$ J_{n}(t)=I+ \int_{t_{n}}^{t}X(t_{n}, u)B(u)\,du. $$

Assume that \((A)\): \(J_{n}(t)\) is invertible for all \(n\in Z\) and \(t\in [t_{n}, t_{n+1}]\). Let

$$ H(n)=Z_{n}(t_{n+1}) $$
(3.2)

for all \(n\in Z\). For \(\tau\in R\), let \(k(\tau)\in Z\) such that \(\tau \in J_{k(\tau)}\). Consider \(t>s\) such that \(k(t)>k(s)\). Then we define

$$\begin{aligned} Z(t, s)={}&Z_{k(t)}(t)\bigl[H\bigl(k(t)-1\bigr)H\bigl(k(t)-2\bigr)\cdots H\bigl(k(s)+1\bigr)\bigr] \\ &\times H\bigl(k(s)\bigr)^{-1}Z_{k(s)}(s)^{-1}. \end{aligned}$$
(3.3)

If \(t\leq s\), by condition \((A)\), \(Z(t, s)=Z(s, t)^{-1}\) is well defined. Therefore, \(Z(t, s)\) is the Cauchy matrix for (1.3) and bounded (see [2, 3, 36, 39, 46, 47, 4951]).

In fact,

$$ \bigl\vert Z(t, s) \bigr\vert \leq e^{ \vert A \vert _{\infty}(t_{n+1}-t_{n})} \bigl(1+e^{ \vert A \vert _{\infty}(t_{n+1}-t_{n})} \vert B \vert _{\infty}(t_{n+1}-t_{n}) \bigr) $$

for all \(t, s\in J_{n}\). Consequently, \(Z(t, s)\) is bounded.

Consider the difference equation

$$ \phi(n+1)=H(n)\phi(n). $$
(3.4)

Notice that if \(z: R\rightarrow C\), and z is a solution of (1.3), then \(\phi(n)=z(t_{n})\) is a solution of (3.4).

\((H_{6})\):

Assume that (3.4) has an exponential dichotomy.

According to Definition 2.1, assumption \((H_{6})\) is equivalent to that there are a projection \(\varPi: R^{q}\rightarrow R^{q}\) and positive constants \(\rho, K>0\) with \(\rho<1\) such that

$$\begin{aligned} & \bigl\vert G(n, k) \bigr\vert \leq K\rho^{-(n-k-1)}, \quad\text{if }n\geq k+1, \\ & \bigl\vert G(n, k) \bigr\vert \leq K\rho^{-(k+1-n)}, \quad\text{if }n< k+1 \end{aligned}$$
(3.5)

for all \(n, k\in Z: \pm(n-k)\leq0\), where

$$ G(n, k)= \left \{ \textstyle\begin{array}{l@{\quad}l} \varPhi(n)\varPi\varPhi^{-1}(k+1), &\text{if }n\geq k+1 \\ -\varPhi(n)(I-\varPi)\varPhi^{-1}(k+1), &\text{if }n< k+1, \end{array}\displaystyle \right . $$
(3.6)

and Π is a projection operator (\(\varPi=\varPi^{2}\)), Φ is a fundamental matrix for system (3.4). In particular it will be said that system (3.4) is exponentially stable as \(n\rightarrow +\infty\) if it has an exponential dichotomy with \(\varPi=I\).

If c is the bounded solution of the discrete system

$$ c(n+1)=H(n)c(n)+h(n), $$
(3.7)

then

$$ c(n)=\sum_{k=-\infty}^{+\infty}G(n, k)h(k), $$
(3.8)

where the Green matrix \(G(n, k)\) is given by (3.6), h is given by

$$ h(n)= \int_{t_{n}}^{t_{n+1}}X(t_{n+1}, u)f(u)\,du. $$
(3.9)

By the variation of constants formula (see [4, 36]) and (3.8), (3.9), we obtain that

$$\begin{aligned} y(t)={}&Z\bigl(t, k(t)\bigr)c\bigl(k(t)\bigr)+ \int_{\gamma^{0}(t)}^{t}X(t, u)f(u)\,du \\ ={}&Z_{k(t)}(t)\times\Biggl(\sum_{k=-\infty}^{+\infty}G \bigl(k(t), k\bigr) \int _{t_{k}}^{t_{k+1}}X(t_{k+1}, u)f(u)\,du \Biggr) \\ &+ \int_{\gamma^{0}(t)}^{t}X(t, u)f(u)\,du \end{aligned}$$
(3.10)

for all \(t\in R\), where c is the solution of discrete system (3.7). And (3.10) is a unique bounded solution of (1.1).

Theorem 3.1

Assume that\((H_{1})\), \((H_{3})\), and\((H_{4})\)hold. Then the sequence\(H=\{ H(n)\}_{n=-\infty}^{+\infty}\)given by (3.2) and the sequence\(h=\{ h(n)\}_{n=-\infty}^{+\infty}\)given by (3.9) are asymptotically almost periodic.

Proof

Firstly, we prove that \(\{h(n)\}_{n=-\infty}^{+\infty}\) is asymptotically almost periodic.

By \((H_{4})\), \(f(t)\in \operatorname{AAP}(R^{q})\), let \(f(t)=f_{1}(t)+f_{2}(t)\), where

$$ f_{1}(t)\in \operatorname{AP}\bigl(R^{q}\bigr),\qquad f_{2}(t) \in C_{0}\bigl(R^{q}\bigr). $$

Then

$$\begin{aligned} h(n)&= \int_{t_{n}}^{t_{n+1}}X(t_{n+1}, u)f(u)\,du \\ &= \int_{t_{n}}^{t_{n+1}}X(t_{n+1}, u) \bigl(f_{1}(u)+f_{2}(u)\bigr)\,du \\ &= \int_{t_{n}}^{t_{n+1}}X(t_{n+1}, u)f_{1}(u)\,du+ \int _{t_{n}}^{t_{n+1}}X(t_{n+1}, u)f_{2}(u)\,du. \end{aligned}$$

Now, we prove that

$$ X(t_{n+1}, u)\in \operatorname{APS}\bigl(Z, R^{q} \bigr),\qquad \int_{t_{n}}^{t_{n+1}}X(t_{n+1}, u)f_{1}(u)\, du\in \operatorname{APS}\bigl(Z, R^{q}\bigr). $$
(3.11)

In fact, by Lemma 2.7(a), we obtain that \(\{X(t_{n+1}, u)\}\) is an almost periodic sequence. Set

$$ h_{1}(n)= \int_{t_{n}}^{t_{n+1}}X(t_{n+1}, u)f_{1}(u)\,du. $$

By Lemma 2.6, \(\varGamma=T(A, \varepsilon)\cap T(B, \varepsilon )\cap\varGamma_{\varepsilon}\) is relatively dense for any \(\varepsilon >0\). Let \(p\in P=\bigcup_{\tau\in\varGamma}P_{\tau}(\varepsilon)\), where \(P_{\tau}(\varepsilon)=\{k\in Z|\sup_{n\in Z}|t_{n}^{(k)}-\tau|\leq \varepsilon\}\).

Consequently, there is \(\tau\in\varGamma\) such that \(p\in P_{\tau }(\varepsilon)\). Then we have

$$\begin{aligned} &h_{1}(n+p)-h_{1}(n) \\ &\quad= \int_{t_{n+p}}^{t_{n+p+1}}X(t_{n+p+1}, u)f_{1}(u)\,du- \int _{t_{n}}^{t_{n+1}}X(t_{n+1}, u)f_{1}(u)\,du \\ &\quad= \int_{t_{n+p}}^{t_{n+p+1}}X(t_{n+p+1}, u)f_{1}(u)\,du- \int_{t_{n}+\tau }^{t_{n+p+1}}X(t_{n+p+1}, u)f_{1}(u)\,du \\ &\qquad+ \int_{t_{n}+\tau}^{t_{n+p+1}}X(t_{n+p+1}, u)f_{1}(u)\,du- \int _{t_{n}}^{t_{n+1}}X(t_{n+p+1}, u+ \tau)f_{1}(u+\tau)\,du \\ &\qquad+ \int_{t_{n}}^{t_{n+1}}X(t_{n+p+1}, u+ \tau)f_{1}(u+\tau)\,du- \int _{t_{n}}^{t_{n+1}}X(t_{n+1}, u)f_{1}(u)\,du \\ &\quad= \int_{t_{n+p}}^{t_{n}+\tau}X(t_{n+p+1}, u)f_{1}(u)\,du+ \int_{t_{n+1}+\tau }^{t_{n+p+1}}X(t_{n+p+1}, u)f_{1}(u)\,du \\ &\qquad+ \int_{t_{n}}^{t_{n+1}}\bigl[X(t_{n+p+1}, u+ \tau)f_{1}(u+\tau)-X(t_{n+1}, u)f_{1}(u) \bigr]\,du \end{aligned}$$

for all \(n\in Z\).

By Lemma 2.7, there are positive constants C and \(K'\) such that

$$\begin{gathered} \biggl\vert \int_{t_{n+p}}^{t_{n}+\tau}X(t_{n+p+1}, u)f_{1}(u)\,du \biggr\vert \leq C \bigl\vert t_{n}^{(p)}-\tau \bigr\vert , \\ \biggl\vert \int_{t_{n+1}+\tau}^{t_{n+p+1}}X(t_{n+p+1}, u)f_{1}(u)\,du \biggr\vert \leq C \bigl\vert t_{n+1}^{(p)}-\tau \bigr\vert , \\ \biggl\vert \int_{t_{n}}^{t_{n+1}}\bigl[X(t_{n+p+1}, u+ \tau)f_{1}(u+\tau)-X(t_{n+1}, u)f_{1}(u) \bigr]\,du \biggr\vert \leq K'\varepsilon.\end{gathered} $$

Therefore,

$$\begin{aligned} & \bigl\vert h_{1}(n+p)-h_{1}(n) \bigr\vert \\ & \quad\leq\bigl\vert t_{n}^{(p)}-\tau \bigr\vert C+ \bigl\vert t_{n+1}^{(p)}-\tau \bigr\vert C+K'\varepsilon \\ &\quad\leq\bigl[2C+K'\bigr]\varepsilon \end{aligned}$$

for all \(n\in Z\).

Hence, \(p\in T(h_{1}, [2C+K']\varepsilon)\). Since p is taken arbitrarily in P, so \(P\subseteq T(h_{1}, [2C+K']\varepsilon)\), by Lemma 2.5, P is relatively dense. Consequently, \(T(h_{1}, [2C+K']\varepsilon)\) is also relatively dense. Because \(\varepsilon>0\) is arbitrary, hence \(h_{1}\in \operatorname{APS}(Z, R^{q})\).

According to Lemmas 2.22.4, we have

$$\begin{aligned} & \biggl\vert \int_{t_{n}}^{t_{n+1}}X(t_{n+1}, u)f_{2}(u)\,du \biggr\vert \\ &\quad\leq \int_{t_{n}}^{t_{n+1}} \bigl\vert X(t_{n+1}, u)f_{2}(u) \bigr\vert \,du \\ &\quad\leq k_{0} \int_{t_{n}}^{t_{n+1}} \bigl\vert f_{2}(u) \bigr\vert \,du. \end{aligned}$$

And because \(f_{2}(t)\in C_{0}(R^{q})\), that is, as \(n\rightarrow\infty\), one has \(u\rightarrow\infty\), \(f_{2}(u)\rightarrow0\).

Hence,

$$ \int_{t_{n}}^{t_{n+1}}X(t_{n+1}, u)f_{2}(u)\,du\in C_{0}S\bigl(Z, R^{q}\bigr). $$

Then

$$ \bigl\{ h(n)\bigr\} _{n=-\infty}^{+\infty} \in \operatorname{AAPS}\bigl(Z, R^{q}\bigr). $$

Notice that

$$ H(n)=X(t_{n+1}, t_{n})+ \int_{t_{n}}^{t_{n+1}}X(t_{n+1}, u)B(u)\,du $$

for all \(n\in Z\). Lemma 2.3 implies that \(X(t_{n+1}, t_{n})\in \operatorname{APS}(Z, R^{q})\), and using a method similar to the method of proving \(\{h(n)\}_{n=-\infty }^{+\infty}\), we get

$$ \int_{t_{n}}^{t_{n+1}}X(t_{n+1}, u)B(u)\,du\in \operatorname{AAPS}\bigl(Z, R^{q}\bigr). $$

From all the above, we have \(\{H(n)\}_{n=-\infty}^{+\infty} \in \operatorname{AAPS}(Z, R^{q})\). □

Theorem 3.2

Assume that\((H_{1})\), \((H_{3})\), \((H_{4})\), and\((H_{6})\)hold. Namely, we have linear difference equation (3.4) with exponential dichotomy onZ. Then the solution for linear inhomogeneous difference system (3.7) is an asymptotically almost periodic sequence.

Proof

We know that the solution of equation (3.7) is

$$ c(n)=\sum_{n\in Z}G(n, k)h(k). $$

In terms of Theorem 3.1, we obtain that \(h(k)\) is an asymptotically almost periodic sequence. Thus, let \(h(k)=h_{1}(k)+h_{2}(k)\), where \(h_{1}(k)\in \operatorname{APS}(Z, R^{q})\), \(h_{2}(k)\in C_{0}S(Z, R^{q})\). Then

$$ c(n)=\sum_{n\in Z}G(n, k) \bigl(h_{1}(k)+h_{2}(k)\bigr). $$

Set

$$ I_{1}=\sum_{n\in Z}G(n, k)h_{1}(k),\qquad I_{2}=\sum_{n\in Z}G(n, k)h_{2}(k). $$

Notice that, \(\forall\tau\in T(h_{1}, \varepsilon)\), we have

$$\begin{aligned} & \biggl\vert \sum_{n\in Z}G(n, k)h_{1}(k+\tau)-\sum_{n\in Z}G(n, k)h_{1}(k) \biggr\vert \\ &\quad= \biggl\vert \sum_{n\in Z}G(n, k) \biggr\vert \bigl\vert h_{1}(k+\tau)-h_{1}(k) \bigr\vert \\ &\quad\leq K\sum_{n\in Z}\rho^{- \vert n-k-1 \vert }\varepsilon \\ &\quad= K\bigl(1+\rho^{-1}\bigr) \bigl(1-\rho^{-1} \bigr)^{-1}\varepsilon, \end{aligned}$$

where \(K>0\), \(\rho<1\). Therefore, \(I_{1}\in \operatorname{APS}(Z, R^{q})\).

Next, we just need to prove that \(I_{2}\in C_{0}S(Z, R^{q})\). First, it will be proved that \({\lim_{n\rightarrow+\infty}I_{2}=0}\).

Notice that

$$\begin{aligned} I_{2}={}&\sum_{k\leq n-1}\varPhi(n) \varPi\varPhi^{-1}(k+1)h_{2}(k) \\ &-\sum_{k\geq n}\varPhi(n) (I-\varPi) \varPhi^{-1}(k+1)h_{2}(k). \end{aligned}$$

Due to \(\lim_{n\rightarrow+\infty}\rho^{-(n-1)}=0\), then \(\forall \varepsilon>0\), there exists \(N_{1}>0\) such that \(|\rho ^{-(n-1)}|<\varepsilon\) as \(n>N_{1}\). And because \(\lim_{n\rightarrow +\infty}h_{2}(n)=0\), that is, for the above \(\varepsilon>0\), there is \(N_{2}>0\) such that \(|h_{2}(n)|<\varepsilon\) as \(n>N_{2}\). By taking \(N=\max\{N_{1}, N_{2}\}\), as \(n>N\), one has

$$ \begin{aligned} \vert I_{2} \vert \leq{}&\sum _{k\leq n-1} \bigl\vert \varPhi(n)\varPi\varPhi ^{-1}(k+1)h_{2}(k) \bigr\vert \\ &+\sum_{k\geq n} \bigl\vert \varPhi(n) (I-\varPi) \varPhi^{-1}(k+1)h_{2}(k) \bigr\vert .\end{aligned} $$

We estimate the first part of the above expression:

$$\begin{aligned} &\sum_{k\leq n-1} \bigl\vert \varPhi(n) \varPi\varPhi^{-1}(k+1)h_{2}(k) \bigr\vert \\ &\quad\leq\sum_{k\leq n-1}K\rho^{-(n-k-1)} \bigl\vert h_{2}(k) \bigr\vert \\ &\quad\leq\frac{K}{1-\rho^{-1}}\varepsilon. \end{aligned}$$

Then we estimate the second part:

$$\begin{aligned} &\sum_{k\geq n} \bigl\vert \varPhi(n) (I- \varPi)\varPhi^{-1}(k+1)h_{2}(k) \bigr\vert \\ &\quad=\sum_{k\geq n}K\rho^{-(n-k-1)} \bigl\vert h_{2}(k) \bigr\vert \\ &\quad< \varepsilon\sum_{k\geq n}K\rho^{-(n-k-1)} \\ &\quad=\frac{K\rho}{1-\rho^{-1}}\varepsilon. \end{aligned}$$

Hence, \(\lim_{n\rightarrow+\infty}I_{2}=0\). In a similar way, \(\lim_{n\rightarrow-\infty}I_{2}=0\). In conclusion, \(\lim_{|n|\rightarrow \infty}I_{2}=0\); in other words, \(I_{2}\in C_{0}S(Z, R^{q})\).

From all the above, \(c(n)\in \operatorname{AAPS}(Z, R^{q})\). □

Theorem 3.3

If\((H_{1})\), \((H_{3})\), \((H_{4})\), and\((H_{6})\)hold, then equation (1.1) has a unique asymptotically almost periodic solution.

Proof

The solution of equation (1.1) is

$$ y(t)=\biggl[X(t, t_{n})+ \int_{t_{n}}^{t}X(t, u)B(u)\,du \biggr]y(t_{n})+ \int_{t_{n}}^{t}X(t, u)f(u)\,du, $$
(3.12)

where \(t\in R\), \(t_{n}< t< t_{n+1}\). Obviously, \(\{y(t_{n}): n\in Z\}\) satisfies inhomogeneous difference equation (3.7). By Theorem 3.2, inhomogeneous difference equation (3.7) has a solution \(\{ y_{0}(t_{n}): n\in Z\}\)\(\in \operatorname{AAPS}(Z, R^{q})\) satisfying \(|y_{0}(t_{n})|\leq\beta\) for all \(n\in Z\), and the unique for \(\{y_{0}(t_{n}): n\in Z\}\) ensures the solution \(y(t)\) of equation (1.1) satisfying \(y(t_{n})=y_{0}(t_{n})\) for all \(n\in Z\) (see Lemma 2.1).

The following proof shows that \(y(t)\) is an asymptotically almost periodic solution for equation (1.1).

Obviously, \(y(t)\) is a bounded continuous function. Next, we will prove that

$$ y(t)\in \operatorname{AAP}\bigl(R^{q}\bigr). $$

By \((H_{1})\) and \((H_{4})\), we have

$$ A(t), B(t)\in \operatorname{AP}\bigl(R^{q}, R^{q}\bigr),\qquad f(t) \in \operatorname{AAP}\bigl(R^{q}\bigr). $$

Then let

$$\begin{gathered} f(t)=f_{1}(t)+f_{2}(t),\quad f_{1}(t) \in \operatorname{AP}\bigl(R^{q}\bigr), f_{2}(t)\in C_{0} \bigl(R^{q}\bigr), \\ y(t_{n})=y_{1}(t_{n})+y_{2}(t_{n}),\quad y_{1}(t_{n})\in \operatorname{APS}\bigl(Z, R^{q}\bigr), y_{2}(t_{n})\in C_{0}S\bigl(Z, R^{q}\bigr).\end{gathered} $$

Thus,

$$\begin{aligned} y(t)={}&\biggl[X(t, t_{n})+ \int_{t_{n}}^{t}X(t, u)B(u)\,du \biggr]y(t_{n})+ \int _{t_{n}}^{t}X(t, u)f(u)\,du \\ ={}&\biggl[X(t, t_{n})+ \int_{t_{n}}^{t}X(t, u)B(u)\,du\biggr] \bigl[y_{1}(t_{n})+y_{2}(t_{n}) \bigr] \\ &+ \int_{t_{n}}^{t}X(t, u)\bigl[f_{1}(u)+f_{2}(u) \bigr]\,du \\ ={}&\biggl[X(t, t_{n})+ \int_{t_{n}}^{t}X(t, u)B(u)\,du \biggr]y_{1}(t_{n}) \\ &+\biggl[X(t, t_{n})+ \int_{t_{n}}^{t}X(t, u)B(u)\,du \biggr]y_{2}(t_{n}) \\ &+ \int_{t_{n}}^{t}X(t, u)f_{1}(u)\,du+ \int_{t_{n}}^{t}X(t, u)f_{2}(u)\, du. \end{aligned}$$

Provided that

$$z(t)=\biggl[X(t, t_{n})+ \int_{t_{n}}^{t}X(t, u)B(u)\,du \biggr]y_{1}(t_{n})+ \int _{t_{n}}^{t}X(t, u)f_{1}(u)\,du. $$

From Lemma 2.3, similar to the method of proving (3.11), one has

$$ X(t, t_{n})\in \operatorname{APS}\bigl(Z, R^{q}\bigr),\qquad \int_{t_{n}}^{t}X(t, u)f_{1}(u)\,du\in \operatorname{APS}\bigl(Z, R^{q}\bigr). $$

Let

$$ \sup_{n\in Z} \bigl\vert X(t, t_{n}) \bigr\vert =M_{1}, \qquad\sup_{n\in Z} \bigl\vert y_{1}(t_{n}) \bigr\vert =M_{2}. $$

Taking \(\tau\in T(X(t, t_{n}), \frac{\varepsilon}{2})\cap T(y_{1}(t_{n}), \frac{\varepsilon}{2})\), for all \(n\in Z\), we get

$$\begin{aligned} &\bigl\vert X(t+\tau, t_{n}+\tau)y_{1}(t_{n}+ \tau)-X(t, t_{n})y_{1}(t_{n}) \bigr\vert \\ &\quad\leq \bigl\vert y_{1}(t_{n}+\tau) \bigr\vert \bigl\vert X(t+\tau, t_{n}+\tau)-X(t, t_{n}) \bigr\vert \\ &\qquad+ \bigl\vert X(t, t_{n}) \bigr\vert \bigl\vert y_{1}(t_{n}+\tau)-y_{1}(t_{n}) \bigr\vert \\ &\quad\leq(M_{1}+M_{2})\varepsilon \\ &\quad=\varepsilon_{1}. \end{aligned}$$

Therefore, \(\tau\in T(X(t, t_{n})y_{1}(t_{n}), \varepsilon_{1})\), where \(T(X(t, t_{n})y_{1}(t_{n}), \varepsilon_{1})\) is relatively dense on Z and \(X(t, t_{n})y_{1}(t_{n})\) is almost periodic. In the same way, \(\int_{t_{n}}^{t}X(t, u)B(u)\,du y_{1}(t_{n})\) is also almost periodic. Hence, \(z(t)\) is almost periodic.

Now, we prove that the following function

$$\biggl[X(t, t_{n})+ \int_{t_{n}}^{t}X(t, u)B(u)\,du \biggr]y_{2}(t_{n})+ \int_{t_{n}}^{t}X(t, u)f_{2}(u)\,du $$

is continuous on \(R^{q}\); we will proceed as in the proof of the continuity of \(y(t)\).

According to \(|B(t)|\leq M\) (by condition \((H_{1})\), \(B(t)\in \operatorname{AP}(R^{q}, R^{q})\)), we know that if

$$\varPi(t)=\biggl[X(t, t_{n})+ \int_{t_{n}}^{t}X(t, u)B(u)\,du \biggr]y_{2}(t_{n})+ \int _{t_{n}}^{t}X(t, u)f_{2}(u)\,du, $$

then

$$\begin{aligned} \varPi(t)\leq{}& \biggl\vert \biggl[X(t, t_{n})+ \int_{t_{n}}^{t}X(t, u)B(u)\, du \biggr]y_{2}(t_{n}) \biggr\vert \\ &+ \biggl\vert \int_{t_{n}}^{t}X(t, u)f_{2}(u)\,du \biggr\vert \\ ={}&\varPi_{1}(t)+\varPi_{2}(t). \end{aligned}$$

By Lemma 2.2, we have

$$\begin{aligned} \varPi_{1}(t)\leq{}&\biggl( \bigl\vert X(t, t_{n}) \bigr\vert + \int_{t_{n}}^{t} \bigl\vert X(t, u) \bigr\vert \bigl\vert B(u) \bigr\vert \, du\biggr)y_{2}(t_{n}) \\ \leq{}&(k_{0}+k_{0}M)y_{2}(t_{n}) \end{aligned}$$

as \(|n|\rightarrow\infty\).

And because \(y_{2}(t_{n})\in C_{0}S(Z, R^{q})\), then \(\varPi_{1}(t)\rightarrow0\), so \(\varPi_{1}(t)\in C_{0}(R^{q})\). On the other hand, for \(f_{2}(t)\in C_{0}(R^{q})\), then \(\forall\varepsilon>0\), \(\exists t_{1}>0\), we have \(|f_{2}(t)|<\varepsilon\) as \(|t|>t_{1}\). Hence,

$$\varPi_{2}(t)= \int_{t_{n}}^{t}X(t, u)f_{2}(u)\,du\leq k_{0} \int _{t_{n}}^{t}f_{2}(u)\,du\leq k_{0}\varepsilon. $$

That is, \(\varPi_{2}(t)\in C_{0}(R^{q})\). Thus, \(\varPi(t)\in C_{0}(R^{q})\).

Consequently, \(y(t)=z(t)+\varPi(t)\) is obtained if \(A(t), B(t)\in \operatorname{AP}(R^{q}, R^{q})\), \(f(t)\in \operatorname{AAP}(R^{q})\). On the basis of \(z(t)\in \operatorname{AP}(R^{q})\), \(\varPi(t)\in C_{0}(R^{q})\), so \(y(t)\in \operatorname{AAP}(R^{q})\).

Because the uniqueness of \(y(n)\) implies that \(y(t)\) is unique, hence \(y(t)\) is a unique asymptotically almost periodic solution of equation (1.1). □

Remark 3.1

If \((H_{2})\) holds, in other words, if \(B(t)\in \operatorname{AAP}(R^{q}, R^{q})\) with the other conditions unchanged, then the conclusion remains true. The method of proving this conclusion is similar to the previous processes for proving Theorem 3.3, so it is omitted.

The existence and uniqueness of asymptotically almost periodic solution for system (1.2)

In order to study the existence of asymptotically almost periodic solution for (1.2), by \((H_{5})\), W is an arbitrary nonempty compact subset on \(R^{q}\), and the set

$$ T(F,\varepsilon, W)=\bigl\{ \tau\in R: \bigl\vert F(t+\tau, \omega)-F(t, \omega) \bigr\vert \leq \varepsilon, \forall(t, \omega)\in R\times W\bigr\} $$

is relatively dense for all \(\varepsilon>0\).

Theorem 3.4

Let\(y: R\rightarrow R^{q}\)be an asymptotically almost periodic solution of (1.1). Assume that\((H_{3})\)holds andFsatisfies\((H_{5})\). Then\(F(t, y_{\gamma}(t))\)satisfies\((H_{4})\), where

$$ y_{\gamma}(t)=\bigl(y\bigl(\gamma^{p_{1}}(t)\bigr),y \bigl(\gamma^{p_{2}}(t)\bigr),\ldots, y\bigl(\gamma^{p_{l}}(t) \bigr)\bigr), $$

\(\gamma^{p_{i}}(t)\), \(i=1, 2, \ldots, l\), denotes step functions.

Proof

Since y is asymptotically almost periodic, so for the almost periodic part of y, one has that \(\forall\varepsilon>0\), \(\tau\in T(y, \varepsilon)\cap T(F, \varepsilon , W)\) and F is uniformly continuous. Thus, there is \(\delta>0\) such that \(|s-t|\leq\delta\) for all \(s, t\in R\), we know that \(|y(t)-y(s)|\leq\varepsilon\). In terms of \(P_{\tau}(\delta)=\{k\in Z|\sup_{n\in Z}|t_{n}^{(k)}-\tau|\leq\delta\}\) for all \(k\in Z\), so \(|\gamma^{p_{j}}(t+\tau)-(\gamma^{p_{j}}(t)+\tau)|\leq\delta\) for all \(j=1,\ldots, l\). Moreover,

$$\begin{aligned} &\bigl\vert F\bigl(t+\tau, y_{\gamma}(t+\tau)\bigr)-F\bigl(t, y_{\gamma}(t)\bigr) \bigr\vert \\ &\quad\leq \bigl\vert F\bigl(t+\tau, y_{\gamma}(t+\tau)\bigr)-F\bigl(t, y_{\gamma}(t+\tau)\bigr) \bigr\vert \\ &\qquad+ \bigl\vert F\bigl(t, y_{\gamma}(t+\tau)\bigr)-F\bigl(t, y_{\gamma}(t)\bigr) \bigr\vert \\ &\quad\leq\varepsilon+Ll\varepsilon. \end{aligned}$$

Since \(\varepsilon>0\) is taken arbitrarily, hence \(F(t, y_{\gamma}(t))\) satisfies \((H_{4})\). □

Theorem 3.5

Let\((H_{1})\), \((H_{3})\), \((H_{4})\), and\((H_{6})\)hold. Suppose thatFsatisfies\((H_{5})\). If

$$ 2\frac{KLl}{1-\rho}< 1, $$
(3.13)

then equation (1.2) has a unique asymptotically almost periodic solution.

Proof

Set

$$ (Tc) (n)=\sum_{k=-\infty}^{+\infty}G(n, k)h\bigl(k, \hat{c}(k)\bigr), $$
(3.14)

where

$$ h\bigl(n, \hat{c}(n)\bigr)= \int_{t_{n}}^{t_{n+1}}X(t_{n+1}, s)F\bigl(s, \hat{c}(n)\bigr)\,ds $$

and \(G(n, k)\) is given in (3.6) and \(\hat{c}(n)=(c(n-p_{1}),\ldots, c(n-p_{l}))\).

If c is a fixed point of the operator defined by (3.14), from Theorem 3.2, we know that c is an asymptotically almost periodic solution of the following difference equation:

$$ c(n+1)=H(n)c(n)+h\bigl(n, \hat{c}(n)\bigr). $$
(3.15)

In what follows, we prove it in three steps: for \(c\in \operatorname{AAPS}(Z, R^{q})\), one has \(Tc\in \operatorname{AAPS}(Z, R^{q})\), that is, \(T: \operatorname{AAPS}(Z, R^{q})\rightarrow \operatorname{AAPS}(Z, R^{q})\).

Firstly, we prove \(F(s, \hat{c}(n))\in \operatorname{AAPS}(Z, R^{q})\).

According to \(\hat{c}(n)\in \operatorname{AAPS}(Z, R^{q})\), provided that \(\hat {c}(n)=\hat{c}_{\mathrm{ap}}(n)+\hat{c}_{c_{0}}(n)\), where

$$ \hat{c}_{\mathrm{ap}}(n)\in \operatorname{APS}\bigl(Z, R^{q}\bigr),\qquad \hat{c}_{c_{0}}(n)\in C_{0}S\bigl(Z, R^{q}\bigr) $$

and

$$F\bigl(s, \hat{c}(n)\bigr)=F\bigl(s, \hat{c}_{\mathrm{ap}}(n)\bigr)+\bigl[F \bigl(s, \hat{c}(n)\bigr)-F\bigl(s, \hat{c}_{\mathrm{ap}}(n)\bigr)\bigr]. $$

Then from \((H_{5})\), F satisfies the Lipschitz condition, we have

$$ F\bigl(s, \hat{c}(n)\bigr)-F\bigl(s, \hat{c}_{\mathrm{ap}}(n)\bigr) \leq L\hat{c}_{c_{0}}(n)\rightarrow0. $$

Therefore,

$$ F\bigl(s, \hat{c}(n)\bigr)-F\bigl(s, \hat{c}_{\mathrm{ap}}(n)\bigr) \in C_{0}S\bigl(Z, R^{q}\bigr). $$

Meanwhile, for F satisfies the Lipschitz condition, hence \(F(s, \hat {c}_{\mathrm{ap}}(n))\in \operatorname{APS}(Z, R^{q})\). Consequently,

$$ F\bigl(s, \hat{c}(n)\bigr)\in \operatorname{AAPS}\bigl(Z, R^{q}\bigr). $$

Secondly, we prove \(h(n, \hat{c}(n))\in \operatorname{AAPS}(Z, R^{q})\).

Because \(F(s, \hat{c}(n))\in \operatorname{AAPS}(Z, R^{q})\), let

$$F\bigl(s, \hat{c}(n)\bigr)=F_{1}\bigl(s, \hat{c}(n) \bigr)+F_{2}\bigl(s, \hat{c}(n)\bigr), $$

where

$$ F_{1}\bigl(s, \hat{c}(n)\bigr)\in \operatorname{APS}\bigl(Z, R^{q}\bigr),\qquad F_{2}\bigl(s, \hat{c}(n)\bigr)\in C_{0}S\bigl(Z, R^{q}\bigr). $$

Then

$$\begin{aligned} h\bigl(n, \hat{c}(n)\bigr)=& \int_{t_{n}}^{t_{n+1}}X(t_{n+1}, s)F\bigl(s, \hat {c}(n)\bigr)\,ds \\ =& \int_{t_{n}}^{t_{n+1}}X(t_{n+1}, s) \bigl(F_{1}\bigl(s, \hat{c}(n)\bigr)+F_{2}\bigl(s, \hat {c}(n)\bigr)\bigr)\,ds \\ =& \int_{t_{n}}^{t_{n+1}}X(t_{n+1}, s)F_{1}\bigl(s, \hat{c}(n)\bigr)\,ds + \int_{t_{n}}^{t_{n+1}}X(t_{n+1}, s)F_{2}\bigl(s, \hat{c}(n)\bigr)\,ds. \end{aligned}$$

Now, we prove

$$\begin{gathered} X(t_{n+1}, s)\in \operatorname{APS}\bigl(Z, R^{q}\bigr),\quad \forall s\in R, \\ \int_{t_{n}}^{t_{n+1}}X(t_{n+1}, s)F_{1}\bigl(s, \hat{c}(n)\bigr)\,ds\in \operatorname{APS}\bigl(Z, R^{q} \bigr).\end{gathered} $$

In fact, by Lemma 2.7(a), we know that \(\{X(t_{n+1}, s)\}\) (\(s\in R\)) is an almost periodic sequence. Set

$$ h_{1}\bigl(n, \hat{c}(n)\bigr)= \int_{t_{n}}^{t_{n+1}}X(t_{n+1}, s)F_{1}\bigl(s, \hat{c}(n)\bigr)\,ds. $$

By Lemma 2.6, \(\varGamma=T(A, \varepsilon)\cap T(B, \varepsilon )\cap\varGamma_{\varepsilon}\) is relatively dense for any \(\varepsilon >0\), where

$$ \varGamma_{\varepsilon}=\Bigl\{ r\in R\big|\exists k\in Z, \text{such that }\sup_{n\in Z} \bigl\vert t_{n}^{(k)}-r \bigr\vert \leq\varepsilon\Bigr\} . $$

Suppose that \(p\in P=\bigcup_{\tau\in\varGamma}P_{\tau}(\varepsilon)\), where

$$ P_{\tau}(\varepsilon)=\Bigl\{ k\in Z\big|\sup _{n\in Z} \bigl\vert t_{n}^{(k)}-\tau \bigr\vert \leq \varepsilon\Bigr\} . $$

Thus, there is \(\tau\in\varGamma\) such that \(p\in P_{\tau}(\varepsilon )\), for all \(n\in Z\), we have

$$\begin{aligned} &h_{1}\bigl(n+p, \hat{c}(n+p)\bigr)-h_{1}\bigl(n, \hat{c}(n)\bigr) \\ &\quad= \int_{t_{n+p}}^{t_{n+p+1}}X(t_{n+p+1}, s)F_{1}\bigl(s, \hat{c}(n+p)\bigr)\,ds- \int _{t_{n}}^{t_{n+1}}X(t_{n+1}, s)F_{1}\bigl(s, \hat{c}(n)\bigr)\,ds \\ &\quad= \int_{t_{n+p}}^{t_{n+p+1}}X(t_{n+p+1}, s)F_{1}\bigl(s, \hat{c}(n+p)\bigr)\,ds- \int_{t_{n}+\tau}^{t_{n+p+1}}X(t_{n+p+1}, s)F_{1}\bigl(s, \hat{c}(n+p)\bigr)\,ds \\ &\qquad+ \int_{t_{n}+\tau}^{t_{n+p+1}}X(t_{n+p+1}, s)F_{1}\bigl(s, \hat {c}(n+p)\bigr)\,ds \\ &\qquad- \int_{t_{n}}^{t_{n+1}}X(t_{n+p+1}, s+ \tau)F_{1}\bigl(s+\tau, \hat {c}(n+p)\bigr)\,ds \\ &\qquad+ \int_{t_{n}}^{t_{n+1}}X(t_{n+p+1}, s+ \tau)F_{1}\bigl(s+\tau, \hat {c}(n+p)\bigr)\,ds \\ &\qquad- \int_{t_{n}}^{t_{n+1}}X(t_{n+p+1}, s+ \tau)F_{1}\bigl(s+\tau, \hat {c}(n)\bigr)\,ds \\ &\qquad+ \int_{t_{n}}^{t_{n+1}}X(t_{n+p+1}, s+ \tau)F_{1}\bigl(s+\tau, \hat {c}(n)\bigr)\,ds- \int_{t_{n}}^{t_{n+1}}X(t_{n+1}, s)F_{1}\bigl(s, \hat{c}(n)\bigr)\,ds \\ &\quad= \int_{t_{n+p}}^{t_{n}+\tau}X(t_{n+p+1}, s)F_{1}\bigl(s, \hat{c}(n+p)\bigr)\,ds+ \int _{t_{n+1}+\tau}^{t_{n+p+1}}X(t_{n+p+1}, s)F_{1}\bigl(s, \hat {c}(n+p)\bigr)\,ds \\ &\qquad+ \int_{t_{n}}^{t_{n+1}}X(t_{n+p+1}, s+\tau) \bigl[F_{1}\bigl(s+\tau, \hat {c}(n+p)\bigr)-F_{1} \bigl(s+\tau, \hat{c}(n)\bigr)\bigr]\,ds \\ &\qquad+ \int_{t_{n}}^{t_{n+1}}\bigl[X(t_{n+p+1}, s+ \tau)F_{1}\bigl(s+\tau, \hat {c}(n)\bigr)-X(t_{n+1}, s)F_{1}\bigl(s, \hat{c}(n)\bigr)\bigr]\,ds. \end{aligned}$$

For Lemma 2.7, there are positive constants C and \(K'\) such that

$$\begin{gathered} \biggl\vert \int_{t_{n+p}}^{t_{n}+\tau}X(t_{n+p+1}, s)F_{1}\bigl(s, \hat{c}(n+p)\bigr)\,ds \biggr\vert \leq C \bigl\vert t_{n}^{(p)}-\tau \bigr\vert , \\ \biggl\vert \int_{t_{n+1}+\tau}^{t_{n+p+1}}X(t_{n+p+1}, s)F_{1}\bigl(s, \hat {c}(n+p)\bigr)\,ds \biggr\vert \leq C \bigl\vert t_{n+1}^{(p)}-\tau \bigr\vert , \\ \biggl\vert \int_{t_{n}}^{t_{n+1}}X(t_{n+p+1}, s+\tau) \bigl[F_{1}\bigl(s+\tau, \hat {c}(n+p)\bigr)-F_{1} \bigl(s+\tau, \hat{c}(n)\bigr)\bigr]\,ds \biggr\vert \leq K' \varepsilon, \\ \biggl\vert \int_{t_{n}}^{t_{n+1}}\bigl[X(t_{n+p+1}, s+ \tau)F_{1}\bigl(s+\tau, \hat {c}(n)\bigr)-X(t_{n+1}, s)F_{1}\bigl(s, \hat{c}(n)\bigr)\bigr]\,ds \biggr\vert \leq K'\varepsilon.\end{gathered} $$

Then, for all \(n\in Z\), we have

$$\begin{aligned} & \bigl\vert h_{1}\bigl(n+p, \hat{c}(n+p) \bigr)-h_{1}\bigl(n, \hat{c}(n)\bigr) \bigr\vert \\ &\quad\leq \bigl\vert t_{n}^{(p)}-\tau \bigr\vert C+ \bigl\vert t_{n+1}^{(p)}-\tau \bigr\vert C+2K'\varepsilon \\ &\quad\leq 2\bigl[C+K'\bigr]\varepsilon. \end{aligned}$$

Therefore, \(p\in T(h_{1},2[C+K']\varepsilon)\). And because p is taken arbitrarily in P, where

$$ P=\bigcup_{\tau\in\varGamma}P_{\tau}(\varepsilon), P_{\tau}(\varepsilon)=\Bigl\{ k\in Z\big|\sup_{n\in Z} \bigl\vert t_{n}^{(k)}-\tau \bigr\vert \leq\varepsilon \Bigr\} , $$

we get \(P\subseteq T(h_{1}, 2[C+K']\varepsilon)\). By Lemma 2.5, P is relatively dense, thus, \(T(h_{1},2[C+K']\varepsilon)\) is also relatively dense. Since \(\varepsilon>0\) is arbitrary, so \(h_{1}\in \operatorname{APS}(Z, R^{q})\).

By Lemmas 2.22.4, we know that \(X(t_{n+1}, s)\) is bounded. Therefore,

$$\begin{aligned} & \biggl\vert \int_{t_{n}}^{t_{n+1}}X(t_{n+1}, s)F_{2}\bigl(s, \hat{c}(n)\bigr)\,ds \biggr\vert \\ &\quad\leq \int_{t_{n}}^{t_{n+1}} \bigl\vert X(t_{n+1}, s)F_{2}\bigl(s, \hat{c}(n)\bigr) \bigr\vert \,ds \\ &\quad\leq k_{0} \int_{t_{n}}^{t_{n+1}} \bigl\vert F_{2} \bigl(s, \hat{c}(n)\bigr) \bigr\vert \,ds. \end{aligned}$$

And since \(F_{2}(s, \hat{c}(n))\in C_{0}S(Z, R^{q})\), we have that

$$ \int_{t_{n}}^{t_{n+1}}X(t_{n+1}, s)F_{2}\bigl(s, \hat{c}(n)\bigr)\,ds\in C_{0}S\bigl(Z, R^{q}\bigr). $$

Hence, \(h(n, \hat{c}(n))\in \operatorname{AAPS}(Z, R^{q})\).

Thirdly, we prove \(T(c)\in \operatorname{AAPS}(Z, R^{q})\).

Since \(h(n, \hat{c}(n))\in \operatorname{AAPS}(Z, R^{q})\), let

$$ h\bigl(k, \hat{c}(k)\bigr)=f\bigl(k, \hat{c}(k)\bigr)+g\bigl(k, \hat{c}(k)\bigr), $$

where \(f(k, \hat{c}(k))\in \operatorname{APS}(Z, R^{q})\), \(g(k, \hat{c}(k))\in C_{0}S(Z, R^{q})\). Then

$$\begin{aligned} \begin{aligned} (Tc) (n)=&\sum_{k=-\infty}^{+\infty}G(n, k)h \bigl(k, \hat{c}(k)\bigr) \\ =&\sum_{k=-\infty}^{+\infty}G(n, k)\bigl[f\bigl(k, \hat{c}(k)\bigr)+g\bigl(k, \hat {c}(k)\bigr)\bigr] \\ =&\sum_{k=-\infty}^{+\infty}G(n, k)f\bigl(k, \hat{c}(k)\bigr)+\sum_{k=-\infty }^{+\infty}G(n, k)g \bigl(k, \hat{c}(k)\bigr).\end{aligned} \end{aligned}$$

Set

$$ I_{1}=\sum_{k=-\infty}^{+\infty}G(n, k)f\bigl(k, \hat{c}(k)\bigr),\qquad I_{2}=\sum _{k=-\infty}^{+\infty}G(n, k) g\bigl(k, \hat{c}(k)\bigr). $$

\(\forall\tau\in T(f, \frac{\varepsilon}{2})\), one has

$$\begin{aligned} & \Biggl\vert \sum_{k=-\infty}^{+\infty}G(n, k)f \bigl(k+\tau, \hat{c}(k+\tau)\bigr)-\sum_{k=-\infty}^{+\infty}G(n, k) f\bigl(k, \hat{c}(k)\bigr) \Biggr\vert \\ &\quad\leq \Biggl\vert \sum_{k=-\infty}^{+\infty}G(n, k) \Biggr\vert \bigl( \bigl\vert f\bigl(k+\tau, \hat{c}(k+\tau )\bigr)-f \bigl(k, \hat{c}(k+\tau)\bigr) \bigr\vert \\ &\qquad+ \bigl\vert f\bigl(k, \hat{c}(k+\tau)\bigr)-f\bigl(k, \hat{c}(k)\bigr) \bigr\vert \bigr) \\ &\quad\leq K\sum_{k=-\infty}^{+\infty} \rho^{- \vert n-k-1 \vert }\varepsilon \\ &\quad= K\bigl(1+\rho^{-1}\bigr) \bigl(1-\rho^{-1} \bigr)^{-1}\varepsilon, \end{aligned}$$

where \(K>0\), \(\rho<1\). Consequently, \(I_{1}\in \operatorname{APS}(Z, R^{q})\).

In the following, we prove that \(I_{2}\in C_{0}S(Z, R^{q})\). First of all, we prove \(\lim_{k\rightarrow+\infty}I_{2}=0\).

$$\begin{aligned} I_{2}={}&\sum_{k\leq n-1}\varPhi(n)\varPi \varPhi^{-1}(k+1)g\bigl(k, \hat {c}(k)\bigr) \\ &-\sum_{k\geq n}\varPhi(n) (I-\varPi) \varPhi^{-1}(k+1)g\bigl(k, \hat {c}(k)\bigr). \end{aligned}$$

Because \(\lim_{k\rightarrow+\infty}\rho^{-(n-k-1)}=0\), then for any \(\varepsilon>0\) there exists \(N_{1}>0\), one has \(|\rho ^{-(n-k-1)}|<\varepsilon\) as \(k>N_{1}\), and because \(\lim_{k\rightarrow +\infty}g(k, \hat{c}(k))=0\), namely, for the above \(\varepsilon>0\), there is \(N_{2}>0\), we get \(|g(k, \hat{c}(k))|<\varepsilon\) as \(k>N_{2}\). By taking \(N=\max\{N_{1}, N_{2}\}\) as \(k>N\), we have

$$\begin{aligned} \vert I_{2} \vert \leq{}&\sum _{k\leq n-1} \bigl\vert \varPhi(n)\varPi\varPhi^{-1}(k+1)g \bigl(k, \hat {c}(k)\bigr) \bigr\vert \\ &+\sum_{k\geq n} \bigl\vert \varPhi(n) (I-\varPi) \varPhi^{-1}(k+1)g\bigl(k, \hat {c}(k)\bigr) \bigr\vert . \end{aligned}$$

Because the two part estimations of \(I_{2}\) in Theorem 3.5 (that is, \(\lim_{|k|\rightarrow\infty}I_{2}=0\)) are similar to the two part estimations of \(I_{2}\) in Theorem 3.2 (that is, \(\lim_{|n|\rightarrow \infty}I_{2}=0\)), we just need to replace \(h_{2}(k)\) with \(g(k, \hat{c}(k))\).

In conclusion, \(\lim_{k\rightarrow+\infty}I_{2}=0\) is obtained; similarly, \(\lim_{k\rightarrow-\infty}I_{2}=0\). Therefore, \(\lim_{|k|\rightarrow\infty}I_{2}=0\), that is, \(I_{2}\in C_{0}S(Z, R^{q})\).

From all the above, we have \(T: \operatorname{AAPS}(Z, R^{q})\rightarrow \operatorname{AAPS}(Z, R^{q})\).

Moreover,

$$\begin{aligned} & \bigl\vert (Tc_{1}) (n)-(Tc_{2}) (n) \bigr\vert \\ &\quad= \Biggl\vert \sum_{k=-\infty}^{+\infty}G(n, k)h\bigl(k, \hat{c}_{1}(k)\bigr)-\sum_{k=-\infty }^{+\infty}G(n, k) h\bigl(k, \hat{c}_{2}(k)\bigr) \Biggr\vert \\ &\quad=\sum_{k=-\infty}^{+\infty} \bigl\vert G(n, k) \bigr\vert \bigl\vert h\bigl(k, \hat{c}_{1}(k)\bigr)-h\bigl(k, \hat {c}_{2}(k)\bigr) \bigr\vert \\ &\quad=\sum_{k=-\infty}^{+\infty} \bigl\vert G(n, k) \bigr\vert \biggl\vert \int_{t_{k}}^{t_{k+1}}X(t_{k+1}, s)F\bigl(s, \hat{c}_{1}(k)\bigr)\,ds \\ &\qquad- \int_{t_{k}}^{t_{k+1}}X(t_{k+1}, s)F\bigl(s, \hat{c}_{2}(k)\bigr)\,ds \biggr\vert \\ &\quad= \biggl\vert \sum_{n\geq k}G(n, k)+\sum _{n< k}G(n, k) \biggr\vert \biggl\vert \int _{t_{k}}^{t_{k+1}}X(t_{k+1}, s) \bigl[F\bigl(s,\hat{c}_{1}(k)\bigr)-F\bigl(s, \hat{c}_{2}(k)\bigr)\bigr]\,ds \biggr\vert \\ &\quad\leq KL \biggl\vert \sum_{n\geq k} \rho^{-(n-k-1)}+\sum_{n< k}\rho ^{-(k+1-n)} \biggr\vert \vert c_{1}-c_{2} \vert _{\infty} \\ &\quad\leq2\frac{KLl}{1-\rho} \vert c_{1}-c_{2} \vert _{\infty}. \end{aligned}$$

If (3.13) holds, then \(T: \operatorname{AAPS}(Z, R^{q})\rightarrow \operatorname{AAPS}(Z, R^{q})\) is a contracting mapping. By the Banach contraction fixed point theorem, there is \(c\in \operatorname{AAPS}(Z, R^{q})\), which is a unique fixed point for T. Therefore, equation (3.15) has an asymptotically almost periodic solution c. Similar to Theorem 3.3, we can construct a solution of (1.2):

$$ y(t)=\biggl[X(t, t_{n})+ \int_{t_{n}}^{t}X(t, s)B(s)\,ds\biggr]y(t_{n})+ \int_{t_{n}}^{t}X(t, s)F\bigl(s, \hat{c}(n) \bigr)\,ds. $$

Moreover, we can prove that \(y(t)\) is a unique asymptotically almost periodic solution of equation (1.2). □

References

  1. 1.

    Aftabizadeh, A.R., Wiener, J., Xu, J.M.: Oscillatory and periodic solutions of delay differential equations with piecewise constant argument. Proc. Am. Math. Soc. 99, 673–679 (1987)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Akhmet, M.U.: Integral manifolds of differential equations with piecewise constant argument of generalized type. Nonlinear Anal. 66(2), 367–383 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Akhmet, M.U.: Almost periodic solutions of differential equations with piecewise constant argument of generalized type. Nonlinear Anal. Hybrid Syst. 2, 456–467 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Akhmet, M.U.: Stability of differential equations with piecewise constant arguments of generalized type. Nonlinear Anal. 68, 794–803 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Akhmet, M.U.: Nonlinear Hybrid Continuous/Discrete-Time Models. Atlantis Press, Paris (2011)

    Google Scholar 

  6. 6.

    Barbashin, E.A.K.: On the global stability of motion. Sov. Math. Dokl. 86, 453–456 (1952)

    Google Scholar 

  7. 7.

    Busenberg, S., Cooke, K.L.: Models of vertically transmitted diseases with sequential continuous dynamics. In: Nonlinear Phenomena in Mathematical Sciences. Academic Press, New York (1982)

    Google Scholar 

  8. 8.

    Castillo, S., Pinto, M.: Existence and stability of almost periodic solutions of differential equations with generalized piecewise constant arguments. Electron. J. Differ. Equ. 2015, Article ID 58 (2015)

    MATH  Article  Google Scholar 

  9. 9.

    Chatzarakis, G.E., Li, T.: Oscillation criteria for delay and advanced differential equations with nonmonotone arguments. Complexity 2018, Article ID 8237634 (2018)

    MATH  Article  Google Scholar 

  10. 10.

    Chiu, K.-S.: Exponential stability and periodic solutions of impulsive neural network models with piecewise constant argument. Acta Appl. Math. 151, 199–226 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Chiu, K.-S., Li, T.: Oscillatory and periodic solutions of differential equations with piecewise constant generalized mixed arguments. Math. Nachr. 292, 2153–2164 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Chiu, K.-S., Pinto, M., Jeng, J.C.: Existence and global convergence of periodic solutions in recurrent neural network models with a general piecewise alternately advanced and retarded argument. Acta Appl. Math. 133, 133–152 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Cooke, K.L., Wiener, J.: A survey of differential equations with piecewise constant argument. In: Delay Differential Equations and Dynamical Systems. Lecture Notes in Math., vol. 1475, pp. 1–15. Springer, Berlin (1991)

    Google Scholar 

  14. 14.

    Dai, L.: Nonlinear Dynamics of Piecewise Constant Systems and Implementation of Piecewise Constant Arguments. World Scientific, Hackensack (2008)

    Google Scholar 

  15. 15.

    Dimbour, W.: Almost automorphic solutions for differential equations with piecewise constant argument in a Banach space. Nonlinear Anal. 74, 2351–2357 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Feng, Z.H., Li, F.Y., Liu, J.X.: Notes on a boundary value problem with a periodic nonlinearity. Optik, Int. J. Light Electron Opt. 156, 439–446 (2018)

    Article  Google Scholar 

  17. 17.

    Feng, Z.H., Li, F.Y., Lv, Y., Zhang, S.Q.: A note on Cauchy–Lipschitz–Picard theorem. J. Inequal. Appl. 2016(1), Article ID 271 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Feng, Z.H., Wu, X., Li, H.X.: Multiple solutions for a modified Kirchhoff-type equation in \(R^{N}\). Math. Methods Appl. Sci. 38(4), 708–725 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Feng, Z.H., Wu, X.X., Yang, L.: Stability of a mathematical model with piecewise constant arguments for tumor-immune interaction under drug therapy. Int. J. Bifurc. Chaos 29(1), Article ID 1950009 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Fink, A.M.: Almost Periodic Differential Equation. Lecture Notes in Math., vol. 377. Springer, Berlin (1974)

    Google Scholar 

  21. 21.

    Hong, J., Obaya, R., Sanz, A.: Almost periodic type solutions of some differential equations with piecewise constant argument. Nonlinear Anal. 45, 661–688 (1997)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Lassoued, D., Shah, R., Li, T.: Almost periodic and asymptotically almost periodic functions: part I. Adv. Differ. Equ. 2018, Article ID 47 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Liu, S.T., Zhang, L., Xing, Y.F.: Dynamics of a stochastic heroin epidemic model. J. Comput. Appl. Math. 351, 260–269 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Liu, S.T., Zhang, L., Zhang, X.B., Li, A.B.: Dynamics of a stochastic heroin epidemic model with bilinear incidence and varying population size. Int. J. Biomath. 12(1), Article ID 1950005 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Ma, X., Wu, W.Q., Wang, Y., Zeng, B., Cai, W.: Predicting primary energy consumption using \(\mathrm{NDGM}(1, 1,k,c)\) model with Simpson formula. Sci. Iran. (2020). https://doi.org/10.24200/SCI.2019.51218.2067

    Article  Google Scholar 

  26. 26.

    Ma, X., Wu, W.Q., Zeng, B., Wang, Y., Wu, X.X.: The conformable fractional grey system model. ISA Trans. 96, 255–271 (2020)

    Article  Google Scholar 

  27. 27.

    Ma, X., Xie, M., Wu, W.Q., Zeng, B., Wang, Y., Wu, X.X.: The novel fractional discrete multivariate grey system model and its applications. Appl. Math. Model. 70, 402–424 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    Matsunaga, H., Hara, T., Sakata, S.: Global attractivity for a logistic equation with piecewise constant argument. Nonlinear Differ. Equ. Appl. 8, 45–52 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Myshkis, A.D.: On certain problems in the theory of differential equations with deviating arguments. Russ. Math. Surv. 32, 181–213 (1977)

    MATH  Article  Google Scholar 

  30. 30.

    Palmer, K.J.: Exponential dichotomies, the shadowing lemma and transversal homoclinic points. Dyn. Rep. 1, 265–306 (1988)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Pankov, A.A.: Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations pp. 5–43. Kluwer Academic, Dordrecht (1990)

    Google Scholar 

  32. 32.

    Papaschinopoulos, G.: Exponential dichotomy, topological equivalence and structural stability for differential equations with piecewise constant argument. Analysis 14(2–3), 239–247 (1994)

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Papaschinopoulos, G.: Some results concerning a class of differential equations with piecewise constant argument. Math. Nachr. 166, 193–206 (1994)

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    Perestyuk, N.A., Samoilenko, A.M.: Impulsive Differential Equations. World Scientific, Singapore (1995)

    Google Scholar 

  35. 35.

    Pinto, M.: Asymptotic equivalence of nonlinear and quasi linear differential equations with piecewise constant arguments. Math. Comput. Model. 49, 1750–1758 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    Pinto, M.: Cauchy and Green matrices type and stability in alternately advanced and delayed differential systems. J. Differ. Equ. Appl. 17(2), 235–254 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    Pinto, M.: Existence and stability of almost periodic solutions to differential equations with piecewise constant arguments. Electron. J. Differ. Equ. 2015, Article ID 58 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Pinto, M., Robledo, G.: Controllability and observability for a linear time varying system with piecewise constant delay. Acta Appl. Math. 136(1), 193–216 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Shah, S.M., Wiener, J.: Advanced differential equations with piecewise constant argument deviations. Int. J. Math. Sci. 6, 671–703 (1983)

    MathSciNet  MATH  Article  Google Scholar 

  40. 40.

    Tian, D.H., Wang, Y., Yu, T.: Fuzzy risk assessment based on interval numbers and assessment distributions. Int. J. Fuzzy Syst. (2020). https://doi.org/10.1007/s40815-020-00837-6

    MathSciNet  Article  Google Scholar 

  41. 41.

    Tian, D.H., Yang, B.W., Chen, J.H., Zhao, Y.: A multi-experts and multi-criteria risk assessment model for safety risks in oil and gas industry integrating risk attitudes. Knowl.-Based Syst. 156, 62–73 (2018)

    Article  Google Scholar 

  42. 42.

    Tian, D.H., Zhao, C.L., Wang, B., Zhou, M.: A MEMCIF-IN method for safety risk assessment in oil and gas industry based on interval numbers and risk attitudes. Eng. Appl. Artif. Intell. 85, 269–283 (2019)

    Article  Google Scholar 

  43. 43.

    Veloz, T., Pinto, M.: Existence computability and stability for solutions of the diffusion equation with general piecewise constant argument. J. Math. Anal. Appl. 426(1), 330–339 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  44. 44.

    Wang, P., Lassoued, D., Abbas, S., Zada, A., Li, T.: On almost periodicity of solutions of second-order differential equations involving reflection of the argument. Adv. Differ. Equ. 2019, Article ID 4 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    Wang, Y., Tao, Z.W., Chen, L., Ma, X.: The nonlinear oil–water two-phase flow behavior for a horizontal well in triple media carbonate reservoir. Acta Geophys. 65(5), 977–989 (2017)

    Article  Google Scholar 

  46. 46.

    Wang, Y., Tao, Z.W., Tian, D.H., Ma, X., Li, M.J., Feng, Z.H.: Some novel results of T-periodic solutions for Rayleigh type equation with double deviating arguments. UPB Sci. Bull., Ser. A, Appl. Math. Phys. 82(1), 55–68 (2020)

    Google Scholar 

  47. 47.

    Wang, Y., Tao, Z.W., Yang, K., Ma, X., Tian, D.H., Feng, Z.H.: Dynamic analysis of oil–water two-phase flow for a multiple-fractured horizontal well with multiple finite-conductivity fractures in triple media carbonate reservoir. Z. Angew. Math. Mech. 100, Article ID e201900046 (2020). https://doi.org/10.1002/zamm.201900046

    Article  Google Scholar 

  48. 48.

    Wang, Y., Yi, X.Y.: Flow modeling of well test analysis for a multiple-fractured horizontal well in triple media carbonate reservoir. Int. J. Nonlinear Sci. Numer. Simul. 19(5), 439–457 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  49. 49.

    Wang, Y., Zhang, C., Chen, T., Ma, X.: Modeling the nonlinear flow for a multiple-fractured horizontal well with multiple finite-conductivity fractures in triple media carbonate reservoir. J. Porous Media 21(12), 1283–1305 (2018)

    Article  Google Scholar 

  50. 50.

    Wiener, J.: Differential equations with piecewise constant delays. In: Trends in Theory and Practice of Nonlinear Differential Equations. Lecture Notes in Pure and Appl. Math., vol. 90, pp. 547–552. Dekker, New York (1984)

    Google Scholar 

  51. 51.

    Wiener, J., Cooke, K.L.: Oscillations in systems of differential equations with piecewise constant argument. J. Math. Anal. Appl. 137, 221–239 (1989)

    MathSciNet  MATH  Article  Google Scholar 

  52. 52.

    Wu, W.Q., Ma, X., Wang, Y., Zhang, Y.Y., Zeng, B.: Research on a novel fractional \(\mathrm{GM}(\alpha, n)\) model and its applications. Grey Syst. Theory Appl. 9, 356–373 (2019)

    Article  Google Scholar 

  53. 53.

    Wu, W.Q., Ma, X., Zeng, B., Lv, W.Y., Wang, Y., Li, W.P.: A novel Grey Bernoulli model for short-term natural gas consumption forecasting. Appl. Math. Model. 84, 393–404 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  54. 54.

    Wu, W.Q., Ma, X., Zeng, B., Wang, Y., Cai, W.: Application of the novel fractional grey model \(\mathrm{FAGMO}(1, 1,k)\) to predict China’s nuclear energy consumption. Energy 165, 223–234 (2018)

    Article  Google Scholar 

  55. 55.

    Wu, W.Q., Ma, X., Zeng, B., Wang, Y., Cai, W.: Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model. Renew. Energy 140, 70–87 (2019)

    Article  Google Scholar 

  56. 56.

    Wu, W.Q., Ma, X., Zhang, Y.Y., Li, W.P., Wang, Y.: A novel conformable fractional non-homogeneous grey model for forecasting carbon dioxide emissions of BRICS countries. Sci. Total Environ. 707, Article ID 135447 (2020). https://doi.org/10.1016/j.scitotenv.2019.135447

    Article  Google Scholar 

  57. 57.

    Wu, W.Q., Ma, X., Zhang, Y.Y., Wang, Y., Wu, X.X.: Analysis of novel \(\mathrm{FAGM}(1, 1, t^{\alpha})\) model to forecast health expenditure of China. Grey Syst. Theory Appl. 9, 232–250 (2019)

    Article  Google Scholar 

  58. 58.

    Xiao, J.Y., Wen, S.P., Yang, X.J., Zhong, S.M.: New approach to global Mittag-Leffler synchronization problem of fractional-order quaternion-valued BAM neural networks based on a new inequality. Neural Netw. 122, 320–337 (2020)

    Article  MATH  Google Scholar 

  59. 59.

    Xiao, J.Y., Zhong, S.M.: Synchronization and stability of delayed fractional-order memristive quaternion-valued neural networks with parameter uncertainties. Neurocomputing 363, 321–338 (2019)

    Article  Google Scholar 

  60. 60.

    Xing, Y.F., Zhang, L., Wang, X.H.: Modelling and stability of epidemic model with free-living pathogens growing in the environment. J. Appl. Anal. Comput. 10(1), 55–70 (2020)

    Google Scholar 

  61. 61.

    Yang, X.T.: The existence and uniqueness of positive periodic solutions for certain differential equations with piecewise constant argument. Acta Math. Appl. Sin. 29(6), 984–994 (2006)

    MathSciNet  Google Scholar 

  62. 62.

    Yuan, R.: The existence of almost periodic solutions of retarded differential equations with piecewise constant argument. Nonlinear Anal. 7, 1013–1032 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  63. 63.

    Yuan, R., Hong, J.: The existence of almost periodic solutions for a class of differential equations with piecewise constant argument. Nonlinear Anal. 28, 1439–1450 (1997)

    MathSciNet  MATH  Article  Google Scholar 

  64. 64.

    Zhang, C.: Pseudo almost periodic functions and their applications. Thesis, University of Western Ontario (1992)

  65. 65.

    Zhang, C.: Almost Periodic Type Functions and Ergodicity pp. 1–86, 174–179. Science Press, Beijing (2003)

    Google Scholar 

  66. 66.

    Zhang, L., Liu, S.T., Zhang, X.B.: Asymptotic behavior of a stochastic virus dynamics model with intracellular delay and humoral immunity. J. Appl. Anal. Comput. 9(4), 1425–1442 (2019)

    MathSciNet  Google Scholar 

  67. 67.

    Zhang, L., Xing, Y.F.: Extremal solutions for nonlinear first-order impulsive integro-differential dynamic equations. Math. Notes 105(1–2), 123–131 (2019)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Acknowledgements

We thank the editor and referees for their careful reading and valuable suggestions to make the article reader-friendly.

Availability of data and materials

There is no additional data required for the finding of results of this paper.

Funding

This work was supported by the Program of Science and Technology of Sichuan Province of China (No. 20QYCX0030).

Author information

Affiliations

Authors

Contributions

All authors have equal contribution in this article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yong Wang.

Ethics declarations

Competing interests

It is declared that the authors have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Wang, Y. & Ma, X. Asymptotically almost periodic solutions for certain differential equations with piecewise constant arguments. Adv Differ Equ 2020, 242 (2020). https://doi.org/10.1186/s13662-020-02699-6

Download citation

MSC

  • 34A38
  • 34C27
  • 34D09
  • 34D20

Keywords

  • Asymptotically almost periodic
  • Differential equations with piecewise constant arguments
  • Banach contraction fixed point theorem
  • Exponential dichotomy