Bounded input bounded output stability for Lurie system with time-varying delay

Open Access
Research
  • 85 Downloads

Abstract

This paper studies the bounded input bounded output stability for the Lurie system with time-varying delay. Utilizing the Lyapunov method and linear matrix inequality technology, new bounded input bounded output stability criteria are derived. The numerical simulation is carried out to show the system’s dynamic response, and demonstrate the effectiveness of theoretical results.

Keywords

Time-varying delay Stability Linear matrix inequalities Bounded input bounded output 

1 Introduction

As one of the important nonlinear systems, the Lurie system can be deemed to consist of the linear forward path part, and the nonlinear feedback path part which satisfies the nonlinear bounded constraints. Since the pioneering work in the last century by Lurie [1, 2], much related research has been carried out [3, 4, 5, 6, 7]. For instance, [8] studied the indirect regulation on a nonlinear system with delay argument; [9] investigated the stabilization on a nonlinear system with time delay. These results have possible applications in fields such as complex networks and chaotic systems which are Lurie systems [10, 11, 12, 13, 14, 15, 16].

The analysis on bounded input bounded output (BIBO) stability of systems is very important for its possible application in single/double loop Σ modulators, issues connected with bilinear input/output maps and so on, and they have received a lot of attention from scholars. For instance, [17] studied the BIBO stability of 2D discrete delayed systems, [18] researched the BIBO stability of fractional systems, [19] investigated study the BIBO stability of switched uncertain neutral systems, [20] concerned the BIBO stability of perturbed interconnected power systems, and [21] focused on the BIBO stability of feedback control systems. However, the results on BIBO stability for the Lurie system is seldom found at present. These motivate our research.

In addition, time-varying delay exists in practical systems widely [22, 23, 24, 25, 26, 27, 28], which will make impacts to the stability of Lurie systems. The requirement that the derivative of time-varying delay is less than 1 will restrict the applied scope of the criteria.

With the above concerns, the problem on the bounded input bounded output stability for the Lurie system with time-varying delay will be discussed. The remainder of this paper is organized as follows. Model description and preliminaries will be presented in Section 2. Based on Lyapunov function constructed and linear matrix inequalities [29], the bounded input bounded output criteria will be derived in Section 3. Typical numerical examples will be included to show the effectiveness of theoretical results obtained in Section 4. Finally, the paper will be concluded in Section 5.

Notation

R denotes the set of real numbers. \(R_{+}\) denotes the set of nonnegative real numbers. \(R^{n}\) denotes the set of n-dimensional real column vectors. \(R^{n \times n}\) denotes the set of \(n \times n\) real matrix. ∗ denotes the symmetric part in matrix. \(A > 0\) means that A is a real symmetric positive definitive matrix. I denotes the identity matrix with appropriate dimensions. \(\operatorname{diag}\{ \cdots \}\) denotes the diagonal matrix. \(\lambda_{\min} ( \cdot )\) denotes the minimum eigenvalue of a matrix. \(\lambda_{\max} ( \cdot )\) denotes the maximum eigenvalue of a matrix. \(L_{\infty}^{n}\) denotes the set of bounded function \(r:R_{ +} \to R_{n \times n}\) with norm \(\Vert r \Vert _{\infty} = \sup_{t_{0} \le t < \infty} \Vert r(t) \Vert < + \infty\). sup denotes the supremum. \(\Vert \cdot \Vert _{\infty} \) denotes the infinite norm.

2 Model description and preliminaries

Consider the following Lurie system with time-varying delay:
$$ \textstyle\begin{cases} \dot{x}(t) = Ax(t) + Bx(t - \tau (t)) + Df(t,z(t)) + Hu(t), \\ z(t) = Lx(t) + Nx(t - \tau (t)), \\ u(t) = Gx(t) + r(t), \\ Y(t) = Jx(t), \\ x(t_{0} + \theta ) = \varphi (\theta ),\quad \theta \in [ \textstyle\begin{array}{@{}c@{\quad}c@{}} - h & 0 \end{array}\displaystyle ], \end{cases} $$
(1)
where \(x(t) \in R^{n}\) is the state vector of the system, \(0 \le \tau (t) \le h\) is the time-varying delay, \(\varphi (\theta ) \in L_{n,h}\) is the initial condition of the system. \(u(t) \in R^{l}\) is the control input, \(Y(t) \in R^{m}\) is the system output, \(r(t) \in R^{l}\) is the reference input, \(f(t,z(t)) \in R^{n}\) is the system’s nonlinear term, satisfying the bounded sector constraint,
$$f^{T}\bigl(t,z(t)\bigr) \bigl( f\bigl(t,z(t)\bigr) - Kz(t) \bigr) \le 0, $$
where K is a positive scalar.
Hence,
$$- 2f^{T}(t)f(t) + 2f^{T}(t)K\bigl(Lx(t) + Nx\bigl(t - \tau (t)\bigr)\bigr) \ge 0. $$
Lurie system (1) can be represented as
$$ \textstyle\begin{cases} \dot{x}(t) = y(t), \\ y(t) = Ax(t) + Bx(t - \tau (t)) + Df(t,z(t)) + Hu(t), \\ z(t) = Lx(t) + Nx(t - \tau (t)), \\ u(t) = Gx(t) + r(t), \\ Y(t) = Jx(t), \\ x(t_{0} + \theta ) = \varphi (\theta ),\quad \theta \in [ \textstyle\begin{array}{@{}c@{\quad}c@{}} - h & 0 \end{array}\displaystyle ]. \end{cases} $$
(2)
In the paper, the following lemma and definitions are needed.

Lemma 1

([30])

For any constant matricesE, GandFwith appropriate dimensions, \(F^{T}F \le kI\), kis a positive scalar, then
$$ 2x^{T}EFGy \le cx^{T}EE^{T}x + \frac{k}{c}y^{T}G^{T}Gy, $$
(3)
wherecis a positive scalar, \(x \in R^{n}\)and\(y \in R^{n}\).

Definition 1

([31])

A real-valued vector \(r(t) \in L_{\infty}^{n}\), if \(\Vert r \Vert _{\infty} = \sup_{t_{0} \le t < \infty} \Vert r(t) \Vert < + \infty\).

Definition 2

([31])

The control system with reference input \(r(t)\) is bounded input bounded output stable, if there exist some positive constants \(\theta_{1}\), \(\theta_{2}\), satisfies
$$ \bigl\Vert Y(t) \bigr\Vert \le \theta_{1} \Vert r \Vert _{\infty} + \theta_{2} $$
(4)
for every reference input \(r(t) \in L_{\infty}^{n}\).

3 Main results

In this section, based on the Lyapunov method and linear matrix inequality techniques, the following stability criteria are derived.

Theorem 1

For the given positive scalarshandk, Lurie system (1) is bounded input bounded output stable, if there exist matricesP, R, Q, S, \(P_{2}\), \(P_{3}\), U, V, W, and positive scalarσ, such that
$$\begin{aligned}& \Sigma + \Xi + \Xi^{T} + he^{kh}W < 0, \\& \left [ \textstyle\begin{array}{@{}c@{\quad}c@{}} W & U, \\ * & S - R_{22} \end{array}\displaystyle \right ] > 0, \\& \left [ \textstyle\begin{array}{@{}c@{\quad}c@{}} W & V \\ * & S \end{array}\displaystyle \right ] > 0, \end{aligned}$$
(5)
where
$$\begin{aligned}& \Sigma = \left [ \textstyle\begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{}} \Sigma_{1,1} & \Sigma_{1,2} & \Sigma_{1,3} & \Sigma_{1,4} & \Sigma_{1,5} & \Sigma_{1,6} \\ * & \Sigma_{2,2} & \Sigma_{2,3} & \Sigma_{2,4} & \Sigma_{2,5} & \Sigma_{2,6} \\ * & * & \Sigma_{3,3} & \Sigma_{3,4} & 0 & 0 \\ * & * & * & \Sigma_{4,4} & 0 & 0 \\ * & * & * & * & \Sigma_{5,5} & 0 \\ * & * & * & * & * & \Sigma_{6,6} \end{array}\displaystyle \right ], \\& \Sigma_{1,1} = P_{2}A + A^{T}P_{2}^{T} + P_{2}HG + G^{T}H^{T}P_{2}^{T} + kP + Q,\qquad \Sigma_{2,4} = P_{3}D, \\& \Sigma_{1,2} = P - P_{2} + A^{T}P_{3}^{T} + G^{T}H^{T}P_{3}^{T},\qquad \Sigma_{3,4} = N^{T}K^{T}, \\& \Sigma_{2,2} = he^{kh}S - P_{3} - P_{3}^{T},\qquad \Sigma_{4,4} = - 2I, \\& \Sigma_{1,3} = P_{2}B + R_{12}^{T}, \qquad \Sigma_{5,5} = - Qe^{ - kh}, \\& \Sigma_{2,3} = P_{3}B,\qquad \Sigma_{1,6} = P_{2}H, \\& \Sigma_{3,3} = hR_{11} - R_{12} - R_{12}^{T},\qquad \Sigma_{2,6} = P_{3}H, \\& \Sigma_{1,4} = P_{2}D + L^{T}K^{T}, \qquad \Sigma_{6,6} = - \sigma I, \\& \Xi = \bigl[\textstyle\begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{}} U & 0 & - U + V & 0 & - V & 0 \end{array}\displaystyle \bigr]. \end{aligned}$$

Proof

Choose the Lyapunov-Krasovskii functional [32] as
$$V(t) = V_{1}(t) + V_{2}(t) + V_{3}(t) + V_{4}(t) + V_{5}(t), $$
where
$$\begin{aligned}& V_{1}(t) = \bigl(\textstyle\begin{array}{@{}c@{\quad}c@{}} x^{T}(t) & y^{T}(t)\end{array}\displaystyle \bigr) \left [ \textstyle\begin{array}{@{}c@{\quad}c@{}} I & 0 \\ 0 & 0 \end{array}\displaystyle \right ]\left [ \textstyle\begin{array}{@{}c@{\quad}c@{}} P & 0 \\ P_{2}^{T} & P_{3}^{T} \end{array}\displaystyle \right ]\bigl(\textstyle\begin{array}{@{}c@{\quad}c@{}} x^{T}(t) & y^{T}(t)\end{array}\displaystyle \bigr) ^{T}, \\& V_{2}(t) = \int_{ - h}^{0} \int_{t + \beta}^{t} y^{T}(\alpha )e^{k(\alpha - t + h)}Sy(\alpha )\, d\alpha \, d\beta, \\& V_{3}(t) = \int_{ - h}^{t} \int_{\beta - \tau (\beta )}^{\beta} \eta^{T}e^{k(\beta - t)}R \eta\, d\alpha\, d\beta, \\& V_{4}(t) = \int_{ - h}^{0} \int_{t + \beta}^{t} \xi^{T}(\alpha )e^{k(\alpha - t + h)}W\xi (\alpha )\, d\alpha\, d\beta, \\& V_{5}(t) = \int_{t - h}^{t} x^{T}(s)e^{k(s - t)}Qx(s) \, ds, \\& \eta = \bigl[\textstyle\begin{array}{@{}c@{\quad}c@{}} x(\beta - \tau (\beta )) & y(\alpha ) \end{array}\displaystyle \bigr]^{T}, \\& \xi = \bigl[\textstyle\begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{}} x^{T}(t) & y^{T}(t) & x^{T}(t - \tau (t)) & f^{T}(t) & x^{T}(t - h) & r^{T}(t) \end{array}\displaystyle \bigr]^{T}. \end{aligned}$$
The derivative of \(V(t)\) along trajectory of system (2) is given by
$$\dot{V}(t) = \dot{V}_{1}(t) + \dot{V}_{2}(t) + \dot{V}_{3}(t) + \dot{V}_{4}(t) + \dot{V}_{5}(t), $$
where
$$\begin{aligned}& \dot{V}_{1}(t) = 2\bigl[ \textstyle\begin{array}{@{}c@{\quad}c@{}} x^{T}(t) & y^{T}(t) \end{array}\displaystyle \bigr]\left [ \textstyle\begin{array}{@{}c@{\quad}c@{}} g(t)P_{i} & P_{2} \\ 0 & P_{3} \end{array}\displaystyle \right ]\left [ \textstyle\begin{array}{@{}c@{}} y(t) \\ 0 \end{array}\displaystyle \right ] \\& \hphantom{\dot{V}_{1}(t)}= 2g(t)x^{T}(t)P_{i}y(t) + 2 \bigl(x^{T}(t)P_{2} + y^{T}(t)P_{3} \bigr) \bigl( - y(t) + (A + HG)x(t) \\& \hphantom{\dot{V}_{1}(t)={}}{}+ Bx\bigl(t - \tau (t)\bigr) + Df(t) + Hr(t)\bigr), \\& \dot{V}_{2}(t) = hy^{T}(t)e^{kh}Sy(t) - \int_{t - \tau (t)}^{t} y^{T}(s)e^{k(s - t + h)}Sy(s) \,ds - \int_{t - h}^{t - \tau (t)} y^{T}(s)e^{k(s - t + h)}Sy(s) \,ds \\& \hphantom{\dot{V}_{2}(t) = {}}{}- kV_{2}(t) \\& \hphantom{\dot{V}_{2}(t) }\le hy^{T}(t)e^{kh}Sy(t) - \int_{t - \tau (t)}^{t} y^{T}(s)Sy(s)\,ds - \int_{t - h}^{t - \tau (t)} y^{T}(s)Sy(s)\,ds - kV_{2}(t), \\& \dot{V}_{3}(t) = \tau (t)x^{T}\bigl(t - \tau (t) \bigr)R_{11}x\bigl(t - \tau (t)\bigr) + 2x^{T}\bigl(t - \tau (t)\bigr)R_{12}x(t) \\& \hphantom{\dot{V}_{3}(t) ={}}{}- 2x^{T}\bigl(t - \tau (t)\bigr)R_{12}x \bigl(t - \tau (t)\bigr) + \int_{t - \tau (t)}^{t} y(s)R_{22}y(s)\,ds - kV_{3}(t) \\& \hphantom{\dot{V}_{3}(t)}\le hx^{T}\bigl(t - \tau (t)\bigr)R_{11}x \bigl(t - \tau (t)\bigr) + 2x^{T}(t)R_{12}^{T}x \bigl(t - \tau (t)\bigr) \\& \hphantom{\dot{V}_{3}(t) ={}}{}- 2x^{T}\bigl(t - \tau (t)\bigr)R_{12}x \bigl(t - \tau (t)\bigr) + \int_{t - \tau (t)}^{t} y(s)R_{22}y(s)\,ds - kV_{3}(t), \\& \dot{V}_{4}(t) = h\xi^{T}(t)e^{kh}W\xi (t) - \int_{t - \tau (t)}^{t} \xi^{T}(s)e^{k(s - t + h)}W \xi (s)\,ds \\& \hphantom{\dot{V}_{4}(t) ={}}{}- \int_{t - h}^{t - \tau (t)} \xi^{T}(s)e^{k(s - t + h)}W \xi (s)\,ds - kV_{4}(t) \\& \hphantom{\dot{V}_{4}(t)}\le h\xi^{T}(t)e^{kh}W\xi (t) - \int_{t - \tau (t)}^{t} \xi^{T}(s)W\xi (s)\,ds - \int_{t - h}^{t - \tau (t)} \xi^{T}(s)W\xi (s)\,ds - kV_{4}(t), \\& \dot{V}_{5}(t) = x^{T}(t)Qx(t) - x^{T}(t - h)e^{ - kh}Qx(t - h) - kV_{5}(t). \end{aligned}$$
According to the Leibniz–Newton formula [33]
$$\begin{aligned}& 2\xi^{T}U\biggl[x(t) - x\bigl(t - \tau (t)\bigr) - \int_{t - \tau (t)}^{t} y^{T}(s)\,ds \biggr] = 0, \\& 2\xi^{T}V\biggl[x\bigl(t - \tau (t)\bigr) - x(t - h) - \int_{t - h}^{t - \tau (t)} y^{T}(s)\,ds \biggr] = 0. \end{aligned}$$
Therefore,
$$\begin{aligned} \dot{V}(t) \le& \xi^{T}\bigl(\Sigma + \Omega + \Omega^{T} + he^{kh}W\bigr)\xi - \int_{t - \tau (t)}^{t} \zeta^{T}\Phi_{1} \zeta \,ds - \int_{t - h}^{t - \tau (t)} \zeta^{T}\Phi_{2} \zeta \,ds \\ &{}- kV(t) + \sigma \bigl\Vert r(t) \bigr\Vert _{\infty}^{2}, \end{aligned}$$
where
$$\begin{aligned}& \zeta = \bigl[\textstyle\begin{array}{@{}c@{\quad}c@{}} \xi^{T} & y^{T}(s) \end{array}\displaystyle \bigr]^{T}, \\& \Phi_{1} = \left [ \textstyle\begin{array}{@{}c@{\quad}c@{}} W & U \\ * & S - R_{22} \end{array}\displaystyle \right ], \\& \Phi_{2} = \left [ \textstyle\begin{array}{@{}c@{\quad}c@{}} W & V \\ * & S \end{array}\displaystyle \right ]. \end{aligned}$$
According to (5)
$$\dot{V}(t) \le - kV(t) + \sigma \bigl\Vert r(t) \bigr\Vert _{\infty}^{2}. $$
We will have the following formula:
$$\bigl(V(t)e^{kt}\bigr)' \le \bigl(\dot{V}(t) + kV(t) \bigr)e^{kt} \le \sigma \bigl\Vert r(t) \bigr\Vert _{\infty}^{2}e^{kt}. $$
We integrate the above inequality from \(t_{0}\) to t
$$V(t)e^{kt} \le V(t_{0})e^{kt_{0}} + \sigma \bigl\Vert r(t) \bigr\Vert _{\infty}^{2} \int_{t_{0}}^{t} e^{ks}\,ds. $$
We will obtain
$$\lambda_{\min} (P) \Vert x \Vert ^{2} \le V(t) \le V(t_{0})e^{ - k(t - t_{0})} + \sigma \bigl\Vert r(t) \bigr\Vert _{\infty}^{2} \int_{t_{0}}^{t} e^{ - k(t - s)}\,ds. $$
Consider
$$\begin{aligned} \int_{t_{0}}^{t} e^{ - k(t - s)}\,ds =& e^{ - kt} \int_{t_{0}}^{t} e^{ks}\,ds \\ =& e^{ - kt}\frac{(e^{kt} - e^{kt_{0}})}{k} \\ =& \frac{1}{k} - \frac{e^{k(t_{0} - t)}}{k} \\ \le& \frac{1}{k}. \end{aligned}$$
One can get
$$\lambda_{\min} (P) \Vert x \Vert ^{2} \le V(t_{0})e^{ - k(t - t_{0})} + \frac{\sigma \Vert r(t) \Vert _{\infty}^{2}}{k}. $$
Let us define
$$\psi = \max \Bigl\{ \sup_{h \le \theta \le 0} \bigl\Vert \varphi (t_{0} + \theta ) \bigr\Vert ,\sup_{h \le \theta \le 0} \bigl\Vert \varphi '(t_{0} + \theta ) \bigr\Vert \Bigr\} . $$
According to the definition of \(V(t)\), we have
$$V(t_{0}) \le \bigl[\lambda_{\max} (P) + h^{2}e^{kh} \lambda_{\max} (S) + h^{2}\lambda_{\max} (R) + h^{2}e^{kh}\lambda_{\max} (W) + h \lambda_{\max} (Q)\bigr]\psi^{2}. $$
The following inequality can be concluded:
$$\begin{aligned} \Vert x \Vert ^{2} \le& \frac{a}{\lambda_{\min} (P)}\psi^{2} + \frac{\sigma}{k\lambda_{\min} (P)} \bigl\Vert r(t) \bigr\Vert _{\infty}^{2} \\ \le& \biggl( \sqrt{\frac{a}{\lambda_{\min} (P)}} \psi + \sqrt{\frac{\sigma}{ k\lambda_{\min} (P)}} \bigl\Vert r(t) \bigr\Vert _{\infty} \biggr)^{2}, \end{aligned}$$
where
$$a = \lambda_{\max} (P) + h^{2}e^{kh} \lambda_{\max} (S) + h^{2}\lambda_{\max} (R) + h^{2}e^{kh}\lambda_{\max} (W) + h \lambda_{\max} (Q) > 0. $$
We will obtain
$$\Vert Y \Vert \le \Vert J \Vert \Vert x \Vert \le \theta_{1} + \theta_{2} \bigl\Vert r(t) \bigr\Vert _{\infty}, $$
where
$$\begin{aligned} \begin{aligned} &\theta_{1} = \Vert J \Vert \sqrt{\frac{a}{\lambda_{\min} (P)}} \psi, \\ &\theta_{2} = \Vert J \Vert \sqrt{\frac{\sigma}{k\lambda_{\min} (P)}}. \end{aligned} \end{aligned}$$
Hence, Lurie system (1) is bounded input bounded output stable. The proof of Theorem 1 is thus completed. □

4 Extension

Next, we consider Lurie system (1) with nonlinear term, which satisfies the following bounded sector constraint:
$$\bigl(f^{T}\bigl(t,z(t)\bigr) - K_{1}z(t)\bigr) \bigl( f \bigl(t,z(t)\bigr) - K_{2}z(t) \bigr) \le 0, $$
where \(K_{1}\) and \(K_{2}\) are positive scalars, such that
$${K_{2} > K_{1}}. $$
Let
$$F^{T}\bigl(t,z(t)\bigr) = f^{T}\bigl(t,z(t)\bigr) - K_{1}z(t). $$
We have
$$F^{T}\bigl(t,z(t)\bigr) \bigl( F\bigl(t,z(t)\bigr) - Kz(t) \bigr) \le 0, $$
where
$$K = K_{2} - K_{1}. $$
The following inequality can be derived:
$$- 2F^{T}(t)F(t) + 2F^{T}(t)K\bigl(Lx(t) + Nx\bigl(t - \tau (t)\bigr)\bigr) \ge 0. $$
Therefore Lurie system (1) can be transformed as
$$ \textstyle\begin{cases} \dot{x}(t) = \bar{A}x(t) + \bar{B}x(t - \tau (t)) + DF(t,z(t)) + Hu(t), \\ z(t) = Lx(t) + Nx(t - \tau (t)), \\ u(t) = Gx(t) + r(t), \\ Y(t) = Jx(t), \\ x(t_{0} + \theta ) = \varphi (\theta ),\quad \theta \in [ \textstyle\begin{array}{@{}c@{\quad}c@{}} - h & 0 \end{array}\displaystyle ], \end{cases} $$
(6)
where
$$\begin{aligned}& \bar{A} = A + DK_{1}L, \\& \bar{B} = B + DK_{1}N. \end{aligned}$$
Then based on Theorem 1, the following theoretical result can be concluded.

Theorem 2

For the given positive scalarshandk, Lurie system (6) is bounded input bounded output stable, if there exist matricesP, R, Q, S, \(P_{2}\), \(P_{3}\), U, V, W, and positive scalarσ, such that
$$\begin{aligned}& \Sigma + \Xi + \Xi^{T} + he^{kh}W < 0, \\& \left [ \textstyle\begin{array}{@{}c@{\quad}c@{}} W & U \\ * & S - R_{22} \end{array}\displaystyle \right ] > 0, \\& \left [ \textstyle\begin{array}{@{}c@{\quad}c@{}} W & V \\ * & S \end{array}\displaystyle \right ] > 0, \end{aligned}$$
(7)
where
$$\begin{aligned}& \Sigma = \left [ \textstyle\begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{}} \Sigma_{1,1} & \Sigma_{1,2} & \Sigma_{1,3} & \Sigma_{1,4} & \Sigma_{1,5} & \Sigma_{1,6} \\ * & \Sigma_{2,2} & \Sigma_{2,3} & \Sigma_{2,4} & \Sigma_{2,5} & \Sigma_{2,6} \\ * & * & \Sigma_{3,3} & \Sigma_{3,4} & 0 & 0 \\ * & * & * & \Sigma_{4,4} & 0 & 0 \\ * & * & * & * & \Sigma_{5,5} & 0 \\ * & * & * & * & * & \Sigma_{6,6} \end{array}\displaystyle \right ], \\& \Sigma_{1,1} = P_{2}(A + DK_{1}L) + (A + DK_{1}L)^{T}P_{2}^{T} + P_{2}HG + G^{T}H^{T}P_{2}^{T} + kP + Q,\qquad \Sigma_{2,4} = P_{3}D, \\& \Sigma_{1,2} = P - P_{2} + (A + DK_{1}L)^{T}P_{3}^{T} + G^{T}H^{T}P_{3}^{T},\qquad \Sigma_{3,4} = N^{T}K^{T}, \\& \Sigma_{2,2} = he^{kh}S - P_{3} - P_{3}^{T},\qquad \Sigma_{4,4} = - 2I, \\& \Sigma_{1,3} = P_{2}(B + DK_{1}N) + R_{12}^{T},\qquad \Sigma_{5,5} = - Qe^{ - kh}, \\& \Sigma_{2,3} = P_{3}(B + DK_{1}N),\qquad \Sigma_{1,6} = P_{2}H, \\& \Sigma_{3,3} = hR_{11} - R_{12} - R_{12}^{T},\qquad \Sigma_{2,6} = P_{3}H, \\& \Sigma_{1,4} = P_{2}D + L^{T}K^{T}, \qquad \Sigma_{6,6} = - \sigma I, \\& \Xi = \bigl[\textstyle\begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{}} U & 0 & - U + V & 0 & - V & 0 \end{array}\displaystyle \bigr]. \end{aligned}$$

5 Simulation

In this section, some typical simulation examples will be included to verify the correctness of the theoretical results.

Consider the following Lurie system:
$$\textstyle\begin{cases} \dot{x}(t) = Ax(t) + Bx(t - \tau (t)) + Df(t,z(t)) + Hu(t), \\ z(t) = Lx(t) + Nx(t - \tau (t)), \\ u(t) = Gx(t) + r(t), \\ Y(t) = Jx(t), \\ x(t_{0} + \theta ) = \varphi (\theta ),\quad \theta \in [ \textstyle\begin{array}{@{}c@{\quad}c@{}} - h & 0 \end{array}\displaystyle ] \end{cases} $$
with
$$\begin{aligned}& A = \left [ \textstyle\begin{array}{@{}c@{\quad}c@{}} - 1 & 0.5 \\ 0.5 & - 2 \end{array}\displaystyle \right ],\qquad B = \left [ \textstyle\begin{array}{@{}c@{\quad}c@{}} - 0.4 & 0 \\ 0.3 & - 0.4 \end{array}\displaystyle \right ], \qquad D = \left [ \textstyle\begin{array}{@{}c@{\quad}c@{}} - 0.4 & 0.3 \\ 0 & - 0.3 \end{array}\displaystyle \right ], \\& H = \left [ \textstyle\begin{array}{@{}c@{\quad}c@{}} 0.4 & 0 \\ 0 & 0.4 \end{array}\displaystyle \right ],\qquad L = \left [ \textstyle\begin{array}{@{}c@{\quad}c@{}} 0.2 & 0 \\ 0 & 0.2 \end{array}\displaystyle \right ], \qquad N = \left [ \textstyle\begin{array}{@{}c@{\quad}c@{}} 0.3 & 0 \\ 0 & 0.3 \end{array}\displaystyle \right ], \\& G = \left [ \textstyle\begin{array}{@{}c@{\quad}c@{}} 0.2 & 0 \\ 0 & 0.2 \end{array}\displaystyle \right ],\qquad J = \left [ \textstyle\begin{array}{@{}c@{\quad}c@{}} 1 & 0 \\ 0 & 1 \end{array}\displaystyle \right ], \\& r(t) = \biggl[2\cos (2t)\sin \biggl(\frac{e^{t}}{t + 1}\biggr);\sin (2t)\cos \bigl(e^{t}\bigr)\biggr], \\& f(t,z) = \bigl[ \vert z + 1 \vert + \vert z - 1 \vert \bigr]/2, \\& \tau (t) = 1 + 0.5\sin^{2}(6t),\qquad K = I. \end{aligned}$$
Let \(h =1.5\), \(k = 0.1\), according to Theorem 1, we can get
$$\begin{aligned}& P = \left [ \textstyle\begin{array}{@{}c@{\quad}c@{}} 6.9034 & 0.3387 \\ 0.3387 & 6.4575 \end{array}\displaystyle \right ],\qquad P_{2} = \left [ \textstyle\begin{array}{@{}c@{\quad}c@{}} 4.6360 & 0.9507 \\ 1.0990 & 2.8319 \end{array}\displaystyle \right ], \\& P_{3} = \left [ \textstyle\begin{array}{@{}c@{\quad}c@{}} 3.6444 & 0.6788 \\ 0.9099 & 2.3317 \end{array}\displaystyle \right ], \qquad R_{11} = \left [ \textstyle\begin{array}{@{}c@{\quad}c@{}} 0.4741 & 0.0962 \\ 0.0962 & 0.3748 \end{array}\displaystyle \right ], \\& R_{12} = \left [ \textstyle\begin{array}{@{}c@{\quad}c@{}} 0.5787 & 0.1252 \\ 0.1452 & 0.4494 \end{array}\displaystyle \right ],\qquad R_{22} = \left [ \textstyle\begin{array}{@{}c@{\quad}c@{}} 1.0521 & 0.3290 \\ 0.3290 & 0.7846 \end{array}\displaystyle \right ], \\& S = \left [ \textstyle\begin{array}{@{}c@{\quad}c@{}} 2.0780 & 0.4701 \\ 0.4701 & 1.3947 \end{array}\displaystyle \right ],\qquad Q = \left [ \textstyle\begin{array}{@{}c@{\quad}c@{}} 3.4753 & - 0.6448 \\ - 0.6448 & 4.3384 \end{array}\displaystyle \right ], \\& \sigma = 6.0819. \end{aligned}$$

Remark 1

For the given example, \(1 \le \dot{\tau} (t) \le 1.5\), our criterion is still available because it is independent of the derivative of the time-varying delay of the system.

Remark 2

When the parameter k is fixed, the allowable upper bound \(h_{\mathrm{max}}\) of time delay h of Lurie system (1) can be determined by solving the following optimization problem based on LMI method:
$$\textstyle\begin{cases} h_{\max} = \max_{\mathrm{k} \in [0,0.3]}\{ h\} \\ \quad \mbox{when LMI (5) is satisfied}. \end{cases} $$
For the given example, we can get Table 1.
Table 1

Relationship between k and \(h_{\mathrm{max}}\)

k = 0

k = 0.1

k = 0.2

k = 0.3

\(h_{\mathrm{max}} = 2.5973\)

\(h_{\mathrm{max}} = 2.1693\)

\(h_{\mathrm{max}} = 1.8842\)

\(h_{\mathrm{max}} = 1.6736\)

Remark 3

Table 1 shows the relationship between the parameter k and the allowable upper bound \(h_{\mathrm{max}}\) of time delay. It can be seen that the allowable upper bound \(h_{\mathrm{max}}\) of time delay decreases with the increase of the parameter k, and it takes the maximum value 2.5973 when k is zero.

Next, set the system initial state \(\varphi (\theta ) = [ - 1.5;1.5]^{T}\), \(t \in ( - 1.5,0)\) and the numerical simulation step 0.001 s. Corresponding numerical simulation results are shown in Figures 14.
Figure 1

Time response of reference input variable \(r _{1}(t)\) of the Lurie system

Remark 4

Figures 1 and 2 depict the time response of reference input variables \(r _{1}(t)\) and \(r _{2}(t)\) of the Lurie system. It can be seen that the motion of the system reference input variables are restricted in a set range. Figures 3 and 4 depict the time response of output variables \(Y _{1}(t)\) and \(Y _{2}(t)\) of the Lurie system. It can be seen that the system output variables move within a bounded range. The Lurie system in the example is bounded input bounded output stable.
Figure 2

Time response of reference input variable \(r _{2}(t)\) of the Lurie system

Figure 3

Time response of output variable \(Y _{1}(t)\) of the Lurie system

Figure 4

Time response of output variable \(Y _{2}(t)\) of the Lurie system

6 Conclusions

In this paper, we have studied the bounded input bounded output stability for the Lurie system with time-varying delay. Based on the Lyapunov method and linear matrix inequality technology, new bounded input bounded output stability criteria for the Lurie system have been derived. A typical numerical simulation example has been included to verify the correctness of the presented theoretical results.

Notes

Acknowledgements

This work was partially supported by the Project of Education Department of Sichuan Province (15ZA0142), the Chunhui Plan Project of Ministry of Education (Z2015114), the Graduate Innovation Fund (ycjj2017171), the National Natural Science Foundation of China (61703150, 11626093), the Natural Science Foundation of Hubei Provinces of China (2016CFB211).

Authors’ contributions

All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

References

  1. 1.
    Lur’e, A., Postnikov, V.: On the theory of stability of control system. Prikl. Mat. Meh. 8, 283–286 (1944) (in Russian) MATHGoogle Scholar
  2. 2.
    Lur’e, A.: Some Nonlinear Problem in the Theory of Automatic Control. H. M. Stationery Office, London (1957) Google Scholar
  3. 3.
    Shatyrko, A., Khusainov, D.: On the interval stability of weak-nonlinear control systems with aftereffect. Sci. World J. 2016, Article ID 6490826 (2016) CrossRefGoogle Scholar
  4. 4.
    Aizerman, M., Gantmacher, F.: Absolute Stability of Regulator Systems. Holden-Day, San Francisco (1964) MATHGoogle Scholar
  5. 5.
    Shatyrko, A., Nooijen, R., Kolechkina, A., Khusainov, D.: Stabilization of neutral-type indirect control systems to absolute stability state. Adv. Differ. Equ. 2015, 64 (2015) MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Shatyrko, A.: Interval stability of nonlinear control systems with aftereffect. In: Post-Conference Proceedings of Selected Papers (extended version MITAV-2015), Brno, Czech Republic, pp. 122–132 (2015) Google Scholar
  7. 7.
    Khusainov, D., Shatyrko, A.: Absolute stability of multi-delay regulation systems. J. Autom. Inf. Sci. 27, 3–4 (1995) Google Scholar
  8. 8.
    Shatyrko, A., Khusainov, D.: Absolute stability conditions construction of non-direct regulator systems by Lyapunov-Krasovskiy functional. Bull. Kyiv Univ., Ser. Phys. Math. 4, 145–152 (2009) (In Ukrainian) MATHGoogle Scholar
  9. 9.
    Shatyrko, A., Diblik, J., Khusainov, D., Ruzickova, M.: Stabilization of Lur’e-type nonlinear control systems by Lyapunov-Krasovski functionals. Adv. Differ. Equ. 2012, 229 (2012) CrossRefMATHGoogle Scholar
  10. 10.
    Wang, B., Shi, P., Karimi, H.: Robust \(H_{\infty}\) synchronization of a hyper-chaotic system with disturbance input. Nonlinear Anal., Real World Appl. 14, 1487–1495 (2013) MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Shen, H., Park, J., Wu, Z.: Finite-time synchronization control for uncertain Markov jump neural networks with input constraints. Nonlinear Dyn. 77, 1709–1720 (2014) MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Wang, B., Zou, F., Cheng, J.: A memristor-based chaotic system and its application in image encryption. Optik, Int. J. Light Electron Opt. 154, 538–544 (2018) CrossRefGoogle Scholar
  13. 13.
    Wang, J., Su, L., Shen, H., Wu, Z., Park, J.: Mixed \(H_{\infty}\)/passive sampled-data synchronization control of complex dynamical networks with distributed coupling delay. J. Franklin Inst. 354, 1302–1320 (2017) MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Wang, B., Zhong, S.: Observer-based control on a chaotic system with unknowns and uncertainties. Optik, Int. J. Light Electron Opt. 137, 167–174 (2017) CrossRefGoogle Scholar
  15. 15.
    Shen, H., Zhu, Y., Zhang, L., Park, J.: Extended dissipative state estimation for Markov jump neural networks with unreliable links. IEEE Trans. Neural Netw. Learn. Syst. 28, 346–358 (2017) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wang, B., Zhong, S., Dong, X.: On the novel chaotic secure communication scheme design. Commun. Nonlinear Sci. Numer. Simul. 39, 108–117 (2016) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Wang, L., Chen, X., Gao, F.: Delay-range-dependent robust BIBO stabilization of 2D discrete delayed systems via LMI approach. IFAC Proc. Vol. 47, 10994–10999 (2014) CrossRefGoogle Scholar
  18. 18.
    Abusaksaka, A., Partington, J.: BIBO stability of some classes of delay systems and fractional systems. Syst. Control Lett. 64, 43–46 (2014) MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Xiong, L., Zhong, S., Ye, M.: Delay-dependent BIBO stability analysis of switched uncertain neutral systems. Math. Comput. Model. 53, 1607–1620 (2011) MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Pham, T., Nahavandi, S., Trinh, H., Hien, L.: Decentralized bounded input bounded output stabilization of perturbed interconnected time-delay power systems with energy storages. Int. J. Electr. Power Energy Syst. 93, 51–64 (2017) CrossRefGoogle Scholar
  21. 21.
    Awwad, E., Győri, I., Hartung, F.: BIBO stabilization of feedback control systems with time dependent delays. Appl. Math. Comput. 219, 3664–3676 (2012) MathSciNetMATHGoogle Scholar
  22. 22.
    Malek-Zavarei, M., Jamshidi, M.: Time Delay Systems: Analysis, Optimization and Applications. North-Holland, Amsterdam (1987) MATHGoogle Scholar
  23. 23.
    Wang, B., Yan, J., Cheng, J., Zhong, S.: New criteria of stability analysis for generalized neural networks subject to time-varying delayed signals. Appl. Math. Comput. 314, 322–333 (2017) MathSciNetGoogle Scholar
  24. 24.
    Rasvan, V.: Systems with monotone and slope restricted nonlinearities. Tatra Mt. Math. Publ. 48, 165–187 (2011) MathSciNetMATHGoogle Scholar
  25. 25.
    Wang, B., Cheng, J., Al-Barakati, A., Fardoun, H.: A mismatched membership function approach to sampled-data stabilization for T-S fuzzy systems with time-varying delayed signals. Signal Process. 140, 161–170 (2017) CrossRefGoogle Scholar
  26. 26.
    Cheng, J., Chang, X., Park, J., Li, H., Wang, H.: Fuzzy-model-based \(H_{\infty}\) control for discrete-time switched systems with quantized feedback and unreliable links. Inf. Sci. 436, 181–196 (2018) CrossRefGoogle Scholar
  27. 27.
    Rasvan, V.: Stabilization and decoupling control applied in vehicle dynamics. IFAC Proc. Vol. 29, 97–102 (1996) CrossRefGoogle Scholar
  28. 28.
    Wang, B., Cheng, J., Zhan, J.: A sojourn probability approach to fuzzy-model-based reliable control for switched systems with mode-dependent time-varying delays. Nonlinear Anal. Hybrid Syst. 26, 239–253 (2017) MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Boyd, S., Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in Systems and Control Theory. SIAM, Philadelphia (1994) CrossRefMATHGoogle Scholar
  30. 30.
    Gu, K.: An integral inequality in the stability problem of time-delay systems. In: Proceedings of 39th IEEE CDC, Sydney, Australia, pp. 2805–2810 (2000) Google Scholar
  31. 31.
    Wu, H., Mizukami, K.: Robust stabilization of uncertain linear dynamical systems. Int. J. Syst. Sci. 24, 265–276 (1993) MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    El’sgol’ts, L., Norkin, S.: Introduction to the Theory of the Differential Equations with Deviating Argument. Academic Press, New York (1973) MATHGoogle Scholar
  33. 33.
    Rajchakit, M., Niamsup, P., Rajchakit, G.: A switching rule for exponential stability of switched recurrent neural networks with interval time-varying delay. Adv. Differ. Equ. 2013, 44 (2013) MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Key Laboratory of Fluid and Power Machinery of the Ministry of Education, School of Electrical Engineering and Electronic InformationXihua UniversityChengduP.R. China
  2. 2.School of Applied MathematicsUniversity Electronic Science and Technology of ChinaChengduP.R. China
  3. 3.School of ScienceHubei University for NationalitiesEnshiP.R. China

Personalised recommendations