1 Introduction

In this paper, we investigate the following mixed fractional differential system:

$$\begin{aligned} \textstyle\begin{cases} D^{\beta _{1}}({\varphi _{p_{1}}}({}^{c}D^{\alpha _{1}}u(t)))+ f_{1}(t,u(t), v(t))=0, \\ D^{\beta _{2}}({\varphi _{p_{2}}}({}^{c}D^{\alpha _{2}}v(t)))+ f_{2}(t,u(t), v(t))=0,\quad 0< t< 1, \\ u'(0)=u''(0)=\cdots = u^{(n-1)}(0)=0,\qquad u(1)=\mu _{1}\int _{0}^{1}a(s)v(s)\,dA_{1}(s), \\ v'(0)=v''(0)=\cdots = v^{(m-1)}(0)=0,\qquad v(1)=\mu _{2}\int _{0}^{1}b(s)u(s)\,dA_{2}(s), \\ ^{c}D^{\alpha _{1}}u(0)=0,\qquad {}^{c}D^{\alpha _{1}}u(1)={\varepsilon _{1}} ^{c}D^{\alpha _{1}}u(\eta _{1}),\\ {}^{c}D^{\alpha _{2}}v(0)=0, \qquad {}^{c}D^{ \alpha _{2}}v(1)={\varepsilon _{2}}^{c}D^{\alpha _{2}}v(\eta _{2}), \end{cases}\displaystyle \end{aligned}$$
(1.1)

where \(1<\beta _{i}\leq 2 \), \(1\leq n-1<\alpha _{1} \leq n \), \(1\leq m-1<\alpha _{2} \leq m \), \(n, m\geq 2\), \(D^{\beta _{i}}\) is the Riemann–Liouville derivative operator, \({}^{c}D^{\alpha _{i}}\) is the Caputo derivative. \(\mu _{i}>0\) is a constant, \(\eta _{i}\in (0, 1)\), \(\varepsilon _{i}>0\) and satisfies \(1-\varepsilon _{i}^{p_{i}-1} \eta ^{\beta _{i}-1}>0\), \(\varphi _{p_{i}}\) is the Laplacian operator defined by \(\varphi _{p_{i}}(s)=|s|^{p_{i}-2}s\), \((\varphi _{p_{i}})^{-1}= \varphi _{q_{i}}\), \(\frac{1}{p_{i}}+\frac{1}{q_{i}}=1\), \(p_{i}>1\), \(\int _{0}^{1}a(s)v(s)\,dA_{1}(s)\), \(\int _{0}^{1}b(s)u(s)\,dA_{2}(s)\) denote the Riemann–Stieltjes integrals with a signed measure, that is \(A_{i}: [0, 1]\rightarrow [0, +\infty )\) is the function of bounded variation. \(a, b : [0, 1]\rightarrow [0,+\infty )\) are continuous, \(f_{i}: [0,1]\times [0,+\infty )\times [0,+\infty ) \rightarrow [0, + \infty )\) is a continuous function, \(i=1, 2\).

Compared with the integer order systems, fractional differential systems are regarded as a better tool in the description of some problems in science and engineering. Arafal et al. [1] presented a fractional order model for infection of CD4+T cells:

$$\begin{aligned}& \textstyle\begin{cases} D^{\alpha _{1}}(T)=s-KVT-dT+bI, \\ D^{\alpha _{2}}(I)=KVT-(b+\delta )I, \\ D^{\alpha _{3}}(V)=N \delta I-cV, \end{cases}\displaystyle \end{aligned}$$

where \(\alpha _{1}, \alpha _{2}, \alpha _{3}>0\). In the mathematical context, many mathematicians and applied scholars have studied the fractional differential equation or system in recent years [2,3,4,5,6,7,8,9,10,11,12,13,14,15]. In addition, by applying the functional analysis methods such as the lower and upper solutions, monotone iterative techniques, fractional integro-differential equations or singular equations are researched by Dumitru et al. [16], Denton et al. [17], Lyons and Neugebauer [18], Ambrosio [19], Zhou and Qiao [20]. There are also related books [21, 22].

Cabada and Wang in [23] studied the following factional differential equation:

$$\begin{aligned}& \textstyle\begin{cases} D^{\alpha }u(t) + f(t,u(t))=0, \quad 0< t< 1, \\ u(1)=u'(0)=0,\qquad u(1)=\lambda \int _{0}^{1}u(s)\,dA(s), \end{cases}\displaystyle \end{aligned}$$
(1.2)

where \(2 <\alpha \leq 3\), \(0 <\lambda \), \(\lambda \neq \alpha \), \(D^{\alpha }\) is the Caputo fractional derivative, and \(f: [0,1] \times [0,+\infty )\rightarrow [0, +\infty )\) is a continuous function. By the use of Guo–Krasnosel’skii fixed point theorem, the authors in [23] obtained the positive solution to Eq. (1.2). Cabada and Wang also discussed the solution of Eq. (1.2) when \(D^{\alpha }\) is the Riemann–Liouville fractional derivative [24].

The p-Laplacian equation is the second order quasilinear differential operator, it arises in the modeling of various physical and natural phenomena. Fractional differential equation with p-Laplacian operator can describe the nonlinear phenomena in non-Newtonian fluids and establishes complex process models; for some related articles, see [25,26,27,28,29,30,31]. Via variational methods, Li and Wei [32] dealt with fractional p-Laplacian equations, the existence and multiplicity of nontrivial solutions were obtained. Wu et al. [33] researched the following fractional differential turbulent flow model and obtained the iterative solutions of the equation:

$$\begin{aligned} \textstyle\begin{cases} -D^{\alpha }({\varphi _{p}}(-D^{\gamma }u(t)))=g(t)h(u), \quad 0< t< 1, \\ u(0)=0,\qquad D^{\gamma }u(0)=D^{\gamma }u(1)=0,\qquad u(1)=\int _{0}^{1}u(s)\,dA(s), \end{cases}\displaystyle \end{aligned}$$
(1.3)

where \(1 <\alpha \), \(\gamma \leq 2\), \(D^{\alpha }\), \(D^{\gamma }\) are the Riemann–Liouville fractional derivatives, \(h: [0,+\infty )\rightarrow [0, +\infty )\) is a continuous and increasing function.

Fractional differential systems with p-Laplacian operators have also attracted tremendous attention [34,35,36,37,38,39,40]. Among them, applying the monotone iterative approach, the authors in [34] got the extremal solutions of the following system:

$$\begin{aligned} \textstyle\begin{cases} D_{0^{+}}^{\alpha _{1}}({\varphi _{p_{1}}}(D_{0^{+}}^{\beta _{1}}u(t)))= f_{1}(t, v(t)), \\ D_{0^{+}}^{\alpha _{2}}({\varphi _{p_{2}}}(D_{0^{+}}^{\beta _{2}}v(t)))= f_{2}(t,u(t)),\quad 0< t< 1, \\ u(0)=D_{0^{+}}^{\beta _{1}}u(0)=0,\qquad D_{0^{+}}^{\gamma _{1}}u(1)=\sum_{j=1}^{m-2}a_{1j}D_{0^{+}}^{\gamma _{1}}u(\eta _{j})=0, \\ v(0)=D_{0^{+}}^{\beta _{2}}v(0)=0,\qquad D_{0^{+}}^{\gamma _{2}}v(1)=\sum_{j=1}^{m-2}a_{2j}D_{0^{+}}^{\gamma _{2}}v(\eta _{j})=0, \end{cases}\displaystyle \end{aligned}$$
(1.4)

where \(0<\alpha _{i}\), \(\gamma _{i}\leq 1\), \(1<\beta _{i}\leq 2\), \(D_{0^{+}}^{\alpha _{i}}\), \(D_{0^{+}}^{\beta _{i}} D_{0^{+}}^{\gamma _{i}}\) are the Riemann–Liouville fractional derivatives, \(i=1, 2\).

Inspired by the above articles, in this article we discuss the mixed fractional differential system with p-Laplacian operators under integral boundary value conditions. To the best of our knowledge, there is very little research on mixed fractional differential systems, especially if the system has p-Laplacian operators. Through the application of the Guo–Krasnosel’skii fixed point theorem, the existence of multiple positive solutions of the system is achieved.

2 Preliminaries and lemmas

Definition 2.1

([41, 42])

The Caputo fractional order derivative of order \(\alpha >0\), \(n-1 < \alpha < n\), \(n\in \mathbb{N}\) is defined as

$$ {}^{c}D^{\alpha }u(t)=\frac{1}{\varGamma (n-\alpha )} \int _{0}^{t}(t-s)^{n- \alpha -1}u^{(n)}(s)\,ds, $$

where \(u \in C^{n}(J, \mathbb{R})\), \(\mathbb{R}=(-\infty , +\infty )\), \(\mathbb{N}\) denotes the natural number set, \(n =[\alpha ]+1\), and \([\alpha ]\) denotes the integer part of α.

Definition 2.2

([41, 42])

Let \(\alpha >0\) and let u be piecewise continuous on \((0, +\infty )\) and integrable on any finite subinterval of \([0, +\infty)\). Then, for \(t>0\), we call

$$ I^{\alpha }u(t)=\frac{1}{\varGamma (\alpha )} \int _{0}^{t}(t-s)^{\alpha -1}u(s)\,ds $$

the Riemann–Liouville fractional integral of u of order α.

Lemma 2.1

([41, 42])

Let \(n-1<\alpha \leq n\), \(u \in C^{n}[0, 1]\). Then

$$ I^{\alpha }\bigl({}^{c}D^{\alpha }u\bigr) (t)=u(t)+c_{0}+c_{1} t+c_{2} t^{2}+ \cdots +c_{n-1} t^{n-1}, $$

where \(c_{i} \in \mathbb{R}\) (\(i=1, 2, \ldots , n-1\)), n is the smallest integer greater than or equal to α.

Let \({\varphi _{p_{1}}}({}^{c}D_{0^{+}}^{\alpha _{1}}u(t))=\overline{u}(t)\), \({\varphi _{p_{2}}}({}^{c}D_{0^{+}}^{\alpha _{2}}v(t))=\overline{v}(t)\), then \(\overline{u}(0)=0\), \(\overline{u}(1)=\varepsilon _{1}^{p_{1}-1} \overline{u}(\eta _{1})\), \(\overline{v}(0)=0\), \(\overline{v}(1)= \varepsilon _{2}^{p_{2}-1}\overline{v}(\eta _{2})\), we now consider the following system:

$$\begin{aligned} \textstyle\begin{cases} {D^{\beta _{1}}}\overline{u}(t)+y_{1}(t)=0,\qquad {D^{\beta _{2}}} \overline{v}(t)+y_{2}(t)=0,\quad 0< t< 1, \\ \overline{u}(0)=\overline{v}(0)=0,\qquad \overline{u}(1)=\varepsilon _{1} ^{p_{1}-1}u(\eta _{1}), \\ \overline{v}(1)=\varepsilon _{2}^{p_{2}-1}v(\eta _{2}). \end{cases}\displaystyle \end{aligned}$$
(2.1)

Similar to [43], if \(y_{i}\in C[0, 1]\), then the system (2.1) has a unique solution,

$$\begin{aligned} \textstyle\begin{cases} \overline{u}(t)=\int _{0}^{1} \overline{H}_{1}(t, s)y_{1}(s)\,ds, \\ \overline{v}(t)=\int _{0}^{1} \overline{H}_{2}(t, s)y_{2}(s)\,ds, \end{cases}\displaystyle \end{aligned}$$

where

$$\begin{aligned}& \begin{aligned} &\overline{H}_{i}(t, s)=\overline{h}_{i}(t, s)+\frac{\varepsilon _{i} ^{p_{i}-1}t^{\beta _{i}-1}}{1-\varepsilon _{i}^{p_{i}-1}{\eta _{i}}^{ \beta _{i}-1}}, \\ &\overline{h}_{i}(t,s)= \textstyle\begin{cases} \frac{(t(1-s))^{\beta _{i}-1}-(t-s)^{\beta _{i}-1}}{\varGamma (\beta _{i})}, & 0\leq s\leq t\leq 1, \\ \frac{(t(1-s))^{\beta _{i}-1}}{\varGamma (\beta _{i})}, & 0\leq t\leq s\leq 1. \end{cases}\displaystyle \end{aligned} \end{aligned}$$
(2.2)

For \(y_{i}\in C[0, 1]\), consider the system

$$\begin{aligned} \textstyle\begin{cases} D^{\beta _{1}}({\varphi _{p_{1}}}({}^{c}D^{\alpha _{1}}u(t)))+y_{1}(t)=0,\qquad D^{\beta _{2}}({\varphi _{p_{2}}}({}^{c}D^{\alpha _{2}}v(t)))+y_{2}(t)=0, \quad 0< t< 1, \\ u'(0)=u''(0)=\cdots = u^{(n-1)}(0)=0, \qquad u(1)=\mu _{1}\int _{0}^{1}a(s)v(s)\,dA_{1}(s), \\ v'(0)=v''(0)=\cdots = v^{(m-1)}(0)=0,\qquad v(1)=\mu _{2}\int _{0}^{1}b(s)u(s)\,dA_{2}(s), \\ ^{c}D^{\alpha _{1}}u(0)=0,\qquad {}^{c}D^{\alpha _{1}}u(1)={\varepsilon _{1}} ^{c}D^{\alpha _{1}}u(\eta _{1}), \\ {}^{c}D^{\alpha _{2}}v(0)=0,\qquad {}^{c}D^{ \alpha _{2}}v(1)={\varepsilon _{2}}^{c}D^{\alpha _{2}}v(\eta _{2}). \end{cases}\displaystyle \end{aligned}$$
(2.3)

Through calculation, we conclude that system (2.3) is equal to

$$\begin{aligned} \textstyle\begin{cases} ^{c}D^{\alpha _{1}}u(t)+\varphi _{q_{1}} (\int _{0} ^{1} \overline{H}_{1}(t, s)y_{1}(s)\,ds )=0, \\ ^{c}D^{\alpha _{2}}v(t)+\varphi _{q_{2}} (\int _{0} ^{1} \overline{H}_{2}(t, s)y_{2}(s)\,ds )=0, \quad 0< t< 1, \\ u'(0)=u''(0)=\cdots = u^{(n-1)}(0)=0,\qquad u(1)=\mu _{1}\int _{0}^{1}a(s)v(s)\,dA_{1}(s), \\ v'(0)=v''(0)=\cdots = v^{(m-1)}(0)=0,\qquad v(1)=\mu _{2}\int _{0}^{1}b(s)u(s)\,dA_{2}(s). \end{cases}\displaystyle \end{aligned}$$

Lemma 2.2 was obtained by the author herself and her collaborator in [44]

Lemma 2.2

Assume the following condition \((\mathbf{H}_{0})\) holds.

\((\mathbf{H}_{0})\) :
$$ k_{1}= \int _{0}^{1}a(s)\,dA_{1}(s)>0, \qquad k_{2}= \int _{0}^{1}b(s)\,dA_{2}(s)>0,\quad 1-\mu _{1}\mu _{2}k_{1}k_{2}>0. $$

Let \(h_{i}\in C(0, 1)\cap L(0, 1)\) (\(i=1, 2\)), then the system with the coupled boundary conditions

$$\begin{aligned}& \textstyle\begin{cases} ^{c}D^{\alpha _{1}}u(t)+h_{1}(t)=0,\qquad {}^{c}D^{\alpha _{2}}v(t)+h_{2}(t)=0,\quad 0< t< 1, \\ u'(0)=u''(0)=\cdots = u^{(n-1)}(0)=0, \qquad u(1)=\mu _{1}\int _{0}^{1}a(s)v(s)\,dA_{1}(s), \\ v'(0)=v''(0)=\cdots = v^{(m-1)}(0)=0,\qquad v(1)=\mu _{2}\int _{0}^{1}b(s)u(s)\,dA_{2}(s), \end{cases}\displaystyle \end{aligned}$$
(2.4)

has a unique integral representation,

$$\begin{aligned}& \textstyle\begin{cases} u(t)=\int _{0}^{1} K_{1}(t, s)h_{1}(s)\,ds+\int _{0}^{1} H_{1}(t, s)h_{2}(s)\,ds, \\ v(t)=\int _{0}^{1} K_{2}(t, s)h_{2}(s)\,ds+\int _{0}^{1} H_{2}(t, s)h_{1}(s)\,ds, \end{cases}\displaystyle \end{aligned}$$
(2.5)

where

$$\begin{aligned}& \begin{aligned} &K_{1}(t, s)=\frac{\mu _{1}\mu _{2}k_{1} }{1-\mu _{1}\mu _{2}k_{1}k_{2}} \int _{0}^{1}G_{1}(t, s)b(t)\,dA_{2}(t)+ G_{1}(t, s), \\ & H_{1}(t, s)= \frac{\mu _{1} }{1-\mu _{1}\mu _{2}k_{1}k_{2}} \int _{0} ^{1} G_{2}(t, s)a(t)\,dA_{1}(t), \\ &K_{2}(t, s)=\frac{\mu _{2}\mu _{1}k_{2} }{1-\mu _{1}\mu _{2}k_{1}k_{2}} \int _{0}^{1} G_{2}(t, s)a(t)\,dA_{1}(t)+ G_{2}(t, s), \\ & H_{2}(t, s)= \frac{\mu _{2} }{1-\mu _{1}\mu _{2}k_{1}k_{2}} \int _{0} ^{1}G_{1}(t, s) b(t)\,dA_{2}(t), \end{aligned} \end{aligned}$$
(2.6)

and

$$\begin{aligned}& G_{i}(t,s)= \textstyle\begin{cases} \frac{(1-s)^{\alpha _{i}-1}-(t-s)^{\alpha _{i}-1}}{\varGamma (\alpha _{i})},& 0\leq s\leq t\leq 1, \\ \frac{(1-s)^{\alpha _{i}-1}}{\varGamma (\alpha _{i})}, & 0\leq t\leq s\leq 1, \end{cases}\displaystyle \quad i=1,2. \end{aligned}$$
(2.7)

Lemma 2.3

The Green function \(\overline{H}_{i}(t, s)\), \(G_{i}(t, s)\) (\(i=1, 2\)) defined separately by (2.2), (2.7) has the following properties:

  1. (i)

    \(\overline{H}_{i}(t, s)\), \(G_{i}(t, s): [0, 1]\times [0, 1]\to [0,+\infty )\) are continuous,

  2. (ii)
    $$\begin{aligned} \frac{(1-s)^{\alpha _{i}-1}(1-t^{\alpha _{i}-1})}{\varGamma (\alpha _{i})} \leq G_{i}(t, s)\leq \frac{(1-s)^{\alpha _{i}-1}}{\varGamma (\alpha _{i})}, \quad t, s\in [0, 1]. \end{aligned}$$

Proof

Obviously, (i) holds, we only prove (ii). From the definition of \(G_{i}(t, s)\), for \(0\leq t\leq s\leq 1\), it is obvious that (ii) holds.

For \(0\leq s\leq t\leq 1\), we have \(t-ts\geq t-s\), then

$$\begin{aligned} (1-s)^{\alpha _{i}-1}-(t-s)^{\alpha _{i}-1} \geq& (1-s)^{\alpha _{i}-1}-(t-ts)^{ \alpha _{i}-1} \\ \geq& (1-s)^{\alpha _{i}-1}-t^{\alpha _{i}-1}(1-s)^{\alpha _{i}-1} \\ =&(1-s)^{\alpha _{i}-1}\bigl(1-t^{\alpha _{i}-1}\bigr), \end{aligned}$$

so, we know \(\frac{(1-s)^{\alpha _{i}-1}(1-t^{\alpha _{i}-1})}{\varGamma ( \alpha _{i})} \leq G_{i}(t, s)\). It is also defined by \(G_{i}(t, s)\), and we obtain \(G_{i}(t, s)\leq \frac{(1-s)^{\alpha _{i}}}{\varGamma (\alpha _{i})}\). Thus, (ii) holds. The proof is completed. □

Similar to the proof in [35], Lemma 2.4 was obtained.

Lemma 2.4

For \(t, s\in [0, 1]\), the functions \(K_{i}(t, s)\) and \(H_{i}(t, s)\) (\(i=1, 2\)) defined as (2.3) satisfy

$$\begin{aligned}& K_{1}(t, s), H_{2}(t, s)\leq \rho (1-s)^{\alpha _{1}-1}, \qquad K_{2}(t, s), H_{1}(t, s) \leq \rho (1-s)^{\alpha _{2}-1}, \end{aligned}$$
(2.8)
$$\begin{aligned}& K_{1}(t, s), H_{2}(t, s)\geq \varrho (1-s)^{\alpha _{1}-1}, \qquad K_{2}(t, s), H_{1}(t, s)\geq \varrho (1-s)^{\alpha _{2}-1}, \end{aligned}$$
(2.9)

where

ρ = max { μ 1 μ 2 k 1 Γ ( α 1 ) ( 1 μ 1 μ 2 k 1 k 2 ) 0 1 b ( t ) d A 2 ( t ) + 1 Γ ( α 1 ) , μ 2 Γ ( α 1 ) ( 1 μ 1 μ 2 k 1 k 2 ) 0 1 b ( t ) d A 2 ( t ) , μ 1 μ 2 k 2 Γ ( α 2 ) ( 1 μ 1 μ 2 k 1 k 2 ) 0 1 a ( t ) d A 1 ( t ) + 1 Γ ( α 2 ) , μ 1 Γ ( α 2 ) ( 1 μ 1 μ 2 k 1 k 2 ) 0 1 a ( t ) d A 1 ( t ) , } ϱ = max { μ 1 μ 2 k 1 Γ ( α 1 ) ( 1 μ 1 μ 2 k 1 k 2 ) 0 1 b ( t ) ( 1 t α 1 1 ) d A 2 ( t ) , μ 2 Γ ( α 1 ) ( 1 μ 1 μ 2 k 1 k 2 ) 0 1 b ( t ) ( 1 t α 1 1 ) d A 2 ( t ) , μ 1 μ 2 k 2 Γ ( α 2 ) ( 1 μ 1 μ 2 k 1 k 2 ) 0 1 a ( t ) ( 1 t α 2 1 ) d A 1 ( t ) , μ 1 Γ ( α 2 ) ( 1 μ 1 μ 2 k 1 k 2 ) 0 1 a ( t ) ( 1 t α 2 1 ) d A 1 ( t ) . }

Remark 2.1

From Lemma 2.4, for \(t, \tau , s\in [0, 1]\), we have

$$\begin{aligned}& K_{i}(t, s)\geq \omega K_{i}(\tau , s),\qquad H_{i}(t, s)\geq \omega H_{i}( \tau , s),\quad i=1, 2, \\& K_{1}(t, s)\geq \omega H_{2}(\tau , s),\qquad H_{2}(t, s)\geq \omega K_{1}( \tau , s), \\& K_{2}(t, s)\geq \omega H_{1}(\tau , s),\qquad H_{1}(t, s)\geq \omega K_{2}( \tau , s), \end{aligned}$$

where \(\omega =\frac{\varrho }{\rho }\), ϱ, ρ are defined as Lemma 2.4, \(0<\omega <1\).

Let \(X=C[0, 1]\times C[0, 1]\), then X is a Banach space with the norm

$$ \bigl\Vert (u,v) \bigr\Vert =\max \bigl\{ \Vert u \Vert , \Vert v \Vert \bigr\} ,\qquad \Vert u \Vert =\max_{t\in [0, 1]} \bigl\vert u(t) \bigr\vert ,\qquad \Vert v \Vert =\max_{t\in [0, 1]} \bigl\vert v(t) \bigr\vert . $$

Let

$$ K= \bigl\{ (u,v)\in X: u(t)\geq \omega \bigl\Vert (u,v) \bigr\Vert , v(t)\geq \omega \bigl\Vert (u,v) \bigr\Vert , t\in [0, 1] \bigr\} , $$

where ω is defined as Remark 2.1. It is easy to see that K is a positive cone in X. For any \((u,v)\in K\), we can define an integral operator \(T: K\to X\) by

$$\begin{aligned}& \begin{aligned} &T(u,v) (t)=\bigl(T_{1}(u,v) (t), T_{2}(u,v) (t)\bigr),\quad 0\leq t \leq 1, \\ &T_{1}(u,v) (t)= \int _{0}^{1} K_{1}(t, s)\varphi _{q_{1}} \biggl( \int _{0}^{1} \overline{H}_{1}(s, \tau )f_{1}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\ &\hphantom{T_{1}(u,v)(t)=}{}+ \int _{0}^{1} H_{1}(t, s)\varphi _{q_{2}} \biggl( \int _{0}^{1} \overline{H}_{2}(s, \tau )f_{2}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds, \quad 0\leq t \leq 1, \\ &T_{2}(u,v) (t) = \int _{0}^{1} K_{2}(t, s)\varphi _{q_{2}} \biggl( \int _{0}^{1} \overline{H}_{2}(s, \tau )f_{2}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\ &\hphantom{T_{2}(u,v)(t) =}{}+ \int _{0}^{1} H_{2}(t, s)\varphi _{q_{1}} \biggl( \int _{0}^{1} \overline{H}_{1}(s, \tau )f_{1}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds, \quad 0\leq t \leq 1. \end{aligned} \end{aligned}$$
(2.10)

We know that \((u, v)\) is a positive solutions of system (1.1) if and only if \((u, v)\) is a fixed point of T in K.

Lemma 2.5

\(T: X\to X\) is a completely continuous operator and \(T(K)\subseteq K\).

Proof

By a routine discussion, we see that \(T: X \rightarrow X\) is well defined, so we only prove \(T(K)\subseteq K\). For any \((u, v)\in K\), \(0\leq t\), \(t'\leq 1\), by Remark 2.1, we have

$$\begin{aligned}& T_{1}(u,v) (t) = \int _{0}^{1} K_{1}(t, s)\varphi _{q_{1}} \biggl( \int _{0}^{1} \overline{H}_{1}(s, \tau )f_{1}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\& \hphantom{T_{1}(u,v)(t) =}{}+ \int _{0}^{1} H_{1}(t, s)\varphi _{q_{2}} \biggl( \int _{0}^{1} \overline{H}_{2}(s, \tau )f_{2}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\& \hphantom{T_{1}(u,v)(t)}{}\geq \int _{0}^{1} \omega K_{1} \bigl(t', s\bigr)\varphi _{q_{1}} \biggl( \int _{0} ^{1} \overline{H}_{1}(s, \tau )f_{1}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\& \hphantom{T_{1}(u,v)(t) =}{}+ \int _{0}^{1} \omega H_{1} \bigl(t', s\bigr)\varphi _{q_{2}} \biggl( \int _{0} ^{1} \overline{H}_{2}(s, \tau )f_{2}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\& \hphantom{T_{1}(u,v)(t)}{}\geq \omega \left ( \int _{0}^{1} K_{1} \bigl(t', s\bigr)\varphi _{q_{1}} \biggl( \int _{0}^{1} \overline{H}_{1}(s, \tau )f_{1}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \right . \\& \hphantom{T_{1}(u,v)(t) =}{}\left . + \int _{0}^{1} H_{1} \bigl(t', s\bigr)\varphi _{q_{2}} \biggl( \int _{0} ^{1} \overline{H}_{2}(s, \tau )f_{2}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \right ) \\& \hphantom{T_{1}(u,v)(t)}{}\geq \omega T_{1}(u,v) \bigl(t' \bigr), \end{aligned}$$
(2.11)
$$\begin{aligned}& T_{1}(u,v) (t) \geq \int _{0}^{1} \omega H_{2} \bigl(t', s\bigr)\varphi _{q_{1}} \biggl( \int _{0}^{1} \overline{H}_{1}(s, \tau )f_{1}\bigl(\tau , u(\tau ), v( \tau )\bigr)\,d\tau \biggr)\,ds \\& \hphantom{T_{1}(u,v)(t) \geq}{}+ \int _{0}^{1} \omega K_{2} \bigl(t', s\bigr) \biggl( \int _{0}^{1} \overline{H} _{2}(s, \tau )f_{2}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\& \hphantom{T_{1}(u,v)(t)}{}\geq \omega \left ( \int _{0}^{1} H_{2} \bigl(t', s\bigr)\varphi _{q_{1}} \biggl( \int _{0}^{1} \overline{H}_{1}(s, \tau )f_{1}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \right . \\& \hphantom{T_{1}(u,v)(t) \geq}{} \left .+ \int _{0}^{1} K_{2} \bigl(t', s\bigr) \biggl( \int _{0}^{1} \overline{H} _{2}(s, \tau )f_{2}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\right ) \\& \hphantom{T_{1}(u,v)(t)}{}\geq \omega T_{2}(u,v) \bigl(t' \bigr). \end{aligned}$$
(2.12)

So we have

$$ T_{1}(u,v) (t)\geq \omega \bigl\Vert T_{1}(u,v) \bigr\Vert ,\qquad T_{1}(u,v) (t)\geq \omega \bigl\Vert T _{2}(u,v) \bigr\Vert , $$

i.e.,

$$ T_{1}(u,v) (t)\geq \omega \bigl\Vert \bigl(T_{1}(u,v), T_{2}(u,v)\bigr) \bigr\Vert . $$

In the same way as (2.11) and (2.12), we can prove that

$$ T_{2}(u,v) (t)\geq \omega \bigl\Vert \bigl(T_{1}(u,v), T_{2}(u,v)\bigr) \bigr\Vert . $$

Therefore, we have \(T (K )\subseteq K\).

According to the Ascoli–Arzela theorem, we see that \(T: K\rightarrow K\) is completely continuous. The proof is completed. □

Lemma 2.6

([45])

Let K be a positive cone in a Banach space E, \(\varOmega _{1}\) and \(\varOmega _{2}\) are bounded open sets in E, \(\theta \in \varOmega _{1}\), \(\overline{\varOmega }_{1}\subset \varOmega _{2}\), \(T :K\cap \overline{\varOmega }_{2}\backslash \varOmega _{1} \rightarrow K\) is a completely continuous operator. If the following conditions are satisfied:

$$\Vert Tx \Vert \leq \Vert x \Vert ,\quad \forall {x}\in {K\cap \partial \varOmega _{1}},\qquad \Vert Tx \Vert \geq \Vert x \Vert , \quad \forall {x}\in {K\cap \partial \varOmega _{2}}, $$

or

$$\Vert Tx \Vert \geq \Vert x \Vert ,\quad \forall {x}\in {K\cap \partial \varOmega _{1}},\qquad \Vert Tx \Vert \leq \Vert x \Vert , \quad \forall {x}\in {K\cap \partial \varOmega _{2}}, $$

then T has at least one fixed point in \(K\cap (\overline{ \varOmega }_{2}\backslash \varOmega _{1})\).

3 Main results

Denote

$$\begin{aligned}& f_{10}=\liminf_{x\to 0^{+}} \mathop{\inf _{t\in [a,b]\subset (0, 1)}}_{y\in [0, +\infty )} \frac{f_{1}(t, x, y)}{ \varphi _{p_{1}}(x)},\qquad f_{1}^{0}=\limsup_{x\to 0^{+}} \mathop{\sup _{t\in [0,1]}}_{y\in [0, +\infty )} \frac{f_{1}(t, x, y)}{\varphi _{p_{1}}(x)}, \\& f_{20}=\liminf_{y \to 0^{+}} \mathop{\inf _{t\in [a,b]\subset (0, 1)}}_{x\in [0, +\infty )} \frac{f_{2}(t, x, y)}{ \varphi _{p_{2}}(y)}, \qquad f_{2}^{0}=\limsup_{ y\to 0^{+}} \mathop{ \sup_{t\in [0, 1]}}_{x\in [0, +\infty )} \frac{f_{2}(t, x, y)}{ \varphi _{p_{2}}(y) }, \\& f_{1\infty }=\liminf_{x\to +\infty } \mathop{\inf _{t\in [a,b] \subset (0, 1)}}_{y\in [0, +\infty )} \frac{f_{1}(t, x, y)}{ \varphi _{p_{1}}(x)},\qquad f_{1}^{\infty }=\limsup_{x\to +\infty } \mathop{\sup _{t\in [0,1]}}_{y\in [0, +\infty )} \frac{f_{1}(t, x, y)}{\varphi _{p_{1}}(x) }, \\& f_{2\infty }=\liminf_{ y\to +\infty } \mathop{\inf _{t\in [a,b]\subset (0, 1)}}_{x\in [0, +\infty )} \frac{f_{2}(t, x, y)}{ \varphi _{p_{2}}(y) }, \qquad f_{2}^{\infty }=\limsup_{y\to +\infty } \mathop{ \sup_{t\in [0,1]}}_{x\in [0, +\infty )} \frac{f_{2}(t, x, y)}{ \varphi _{p_{2}}(y) }, \\& L_{i}= \biggl(\frac{1}{2} \int _{0}^{1}\rho (1-s)^{\alpha _{i}-1} \varphi _{q_{i}} \biggl( \int _{0}^{1}\overline{H}_{i}(s, \tau )\,d\tau \biggr)\,ds \biggr) ^{-1}, \\& l_{i}= \biggl(\frac{1}{2} \int _{0}^{1}\varrho (1-s)^{\alpha _{i}-1} \varphi _{q_{i}} \biggl( \int _{a}^{b}\overline{H}_{i}(s, \tau )\,d\tau \biggr)\,ds \biggr) ^{-1}, \quad i=1, 2. \end{aligned}$$

In what follows, we list the conditions to be used later:

\((\mathbf{H}_{1})\) :

\(f_{i0}\in (\varphi _{p_{i}} (\frac{l _{i}}{\omega } ), +\infty ]\), \(f_{i\infty }\in (\varphi _{p_{i}} (\frac{l_{i}}{\omega } ), +\infty ]\).

\((\mathbf{H}_{2})\) :

\(f^{0}_{i}\in [0, \varphi _{p_{i}}(L_{i}) )\), \(f^{\infty }_{i}\in [0, \varphi _{p_{i}}(L_{i}) )\).

\((\mathbf{H}_{3})\) :

There exist constants \(d_{i}\in (0, L_{i})\) and \(r_{1}>0\), such that

$$ f_{i}(t, x, y)\leq \varphi _{p_{i}}(d_{i} r_{1}), \quad 0\leq t\leq 1, 0 \leq x, y\leq r_{1}. $$
\((\mathbf{H}_{4})\) :

There exist constants \(d^{*}_{i}\in (l_{i}, + \infty )\) and \(R_{1}>0\), \([a, b]\subset (0, 1)\), such that

$$ f_{i}(t, x, y)\geq \varphi _{p_{i}}\bigl(d^{*}_{i} R_{1}\bigr),\quad a\leq t\leq b, \omega R_{1}\leq x, y \leq R_{1}. $$

Theorem 3.1

Assume that \((\mathbf{H}_{0})\), \((\mathbf{H}_{1})\), \((\mathbf{H}_{3})\) hold, then system (1.1) has at least two positive solutions \((u_{1}, v_{1})\) and \((u_{2}, v_{2})\) such that \(0<\|(u_{1}, v_{1})\|<r_{1}<\|(u_{2}, v_{2})\|\).

Proof

(I) By \((\mathbf{H}_{3})\), there exist constants \(d_{i}\in (0, L_{i})\) and \(r_{1}>0\), such that

$$\begin{aligned} f_{i}(t, x, y)\leq \varphi _{p_{i}}(d_{i} r_{1}),\quad 0\leq t\leq 1, 0 \leq x, y\leq r_{1}. \end{aligned}$$
(3.1)

Let \(K_{r_{1}}=\{(u, v)\in K: \|(u, v)\|< r_{1} \}\). For any \((u, v)\in \partial K_{r_{1}}\), by the definition of \(\|\cdot \|\), we know that

$$\begin{aligned}& \begin{aligned}&u(t)\leq \bigl\vert u(t) \bigr\vert \leq \Vert u \Vert \leq \bigl\Vert (u, v) \bigr\Vert \leq r_{1}, \\ & v(t)\leq \bigl\vert v(t) \bigr\vert \leq \Vert v \Vert \leq \bigl\Vert (u, v) \bigr\Vert \leq r_{1}, \quad 0\leq t\leq 1. \end{aligned} \end{aligned}$$
(3.2)

Thus, for any \((u, v)\in \partial K_{r_{1}}\), by (3.1) and (3.2), we can obtain

$$\begin{aligned} f_{i}\bigl(t, u(t), v(t)\bigr)\leq \varphi _{p_{i}}(d_{i} r_{1}),\quad 0\leq t \leq 1. \end{aligned}$$
(3.3)

Hence, for any \((u, v)\in \partial K_{r_{1}}\), by Lemmas 2.3, 2.4 and (3.3), we have

$$\begin{aligned} T_{1}(u,v) (t) =& \int _{0}^{1} K_{1}(t, s)\varphi _{q_{1}} \biggl( \int _{0}^{1} \overline{H}_{1}(s, \tau )f_{1}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\ &{} + \int _{0}^{1} H_{1}(t, s)\varphi _{q_{2}} \biggl( \int _{0}^{1} \overline{H}_{2}(s, \tau )f_{2}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\ \leq & \int _{0}^{1} \rho (1-s)^{\alpha _{1}-1}\varphi _{q_{1}} \biggl( \int _{0}^{1} \overline{H}_{1}(s, \tau )f_{1}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\ & {}+ \int _{0}^{1}\rho (1-s)^{\alpha _{2}-1}\varphi _{q_{2}} \biggl( \int _{0}^{1} \overline{H}_{2}(s, \tau )f_{2}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\ \leq & \int _{0}^{1} \rho (1-s)^{\alpha _{1}-1}\varphi _{q_{1}} \biggl( \int _{0}^{1} \overline{H}_{1}(s, \tau )\varphi _{p_{1}}(d_{1} r_{1})\,d\tau \biggr)\,ds \\ &{} + \int _{0}^{1}\rho (1-s)^{\alpha _{2}-1}\varphi _{q_{2}} \biggl( \int _{0}^{1} \overline{H}_{2}(s, \tau )\varphi _{p_{2}}(d_{2} r_{1})\,d\tau \biggr)\,ds \\ \leq & r_{1}\left ( L_{1} \int _{0}^{1} \rho (1-s)^{\alpha _{1}-1} \varphi _{q_{1}} \biggl( \int _{0}^{1} \overline{H}_{1}(s, \tau )\,d\tau \biggr)\,ds\right . \\ &\left .{} +L_{2} \int _{0}^{1}\rho (1-s)^{\alpha _{2}-1}\varphi _{q_{2}} \biggl( \int _{0}^{1} \overline{H}_{2}(s, \tau )\,d\tau \biggr)\,ds\right ) \\ =&r_{1}= \bigl\Vert (u, v) \bigr\Vert . \end{aligned}$$
(3.4)

Similar to (3.4), for any \((u, v)\in \partial K_{r_{1}}\), we also have

$$ \bigl\Vert T_{2}(u,v) \bigr\Vert \leq r_{1}= \bigl\Vert (u, v) \bigr\Vert . $$

Consequently

$$\begin{aligned}& \bigl\Vert T(u, v) \bigr\Vert =\max \bigl\{ \bigl\Vert T_{1}(u, v) \bigr\Vert , \bigl\Vert T_{2}(u, v) \bigr\Vert \bigr\} \leq r_{1}= \bigl\Vert (u, v) \bigr\Vert , \quad (u, v)\in \partial K_{r_{1}}. \end{aligned}$$
(3.5)

(II) With the first inequality of \((\mathbf{H}_{1})\), \(f_{i0}\in (\varphi _{p_{i}} (\frac{l_{i}}{\omega } ), +\infty ]\), there exists a real number \(r\in (0, r_{1})\), such that

$$\begin{aligned}& \begin{aligned} &f_{1}(t, x, y)\leq \varphi _{p_{1}}(x)\varphi _{p_{1}} \biggl(\frac{l _{1}}{\omega } \biggr),\quad a\leq t\leq b, 0\leq x\leq r, y\geq 0, \\ &f_{2}(t, x, y)\leq \varphi _{p_{2}}(y)\varphi _{p_{2}} \biggl(\frac{l _{2}}{\omega } \biggr),\quad a\leq t\leq b, 0\leq y\leq r, x\geq 0. \end{aligned} \end{aligned}$$
(3.6)

Let \(K_{r}=\{(u, v)\in K: \|(u, v)\|< r\}\). For any \((u, v)\in \partial K_{r}\),

$$\begin{aligned}& \begin{aligned}&r = \bigl\Vert (u, v) \bigr\Vert \geq u(t)\geq \omega \bigl\Vert (u, v) \bigr\Vert \geq \omega r, \\ & r = \bigl\Vert (u, v) \bigr\Vert \geq v(t)\geq \omega \bigl\Vert (u, v) \bigr\Vert \geq \omega r, \quad 0\leq t\leq 1. \end{aligned} \end{aligned}$$
(3.7)

By Lemmas 2.3, 2.4 and (3.6), (3.7), we have

$$\begin{aligned} T_{1}(u,v) (t) =& \int _{0}^{1} K_{1}(t, s)\varphi _{q_{1}} \biggl( \int _{0}^{1} \overline{H}_{1}(s, \tau )f_{1}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\ &{} + \int _{0}^{1} H_{1}(t, s)\varphi _{q_{2}} \biggl( \int _{0}^{1} \overline{H}_{2}(s, \tau )f_{2}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\ \geq & \int _{0}^{1} \varrho (1-s)^{\alpha _{1}-1} \varphi _{q_{1}} \biggl( \int _{0}^{1} \overline{H}_{1}(s, \tau )f_{1}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\ &{} + \int _{0}^{1}\varrho (1-s)^{\alpha _{2}-1} \varphi _{q_{2}} \biggl( \int _{0}^{1} \overline{H}_{2}(s, \tau )f_{2}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\ \geq & \int _{0}^{1} \varrho (1-s)^{\alpha _{1}-1} \varphi _{q_{1}} \biggl( \int _{a}^{b} \overline{H}_{1}(s, \tau )\varphi _{p_{1}}\bigl(u(\tau )\bigr) \varphi _{p_{1}} \biggl(\frac{l_{1}}{\omega } \biggr)\,d\tau \biggr)\,ds \\ &{} + \int _{0}^{1}\varrho (1-s)^{\alpha _{2}-1} \varphi _{q_{2}} \biggl( \int _{a}^{b} \overline{H}_{2}(s, \tau )\varphi _{p_{2}}\bigl(v(\tau )\bigr) \varphi _{p_{2}} \biggl(\frac{l_{2}}{\omega } \biggr)\,d\tau \biggr)\,ds \\ \geq & r\left ( l_{1} \int _{0}^{1} \varrho (1-s)^{\alpha _{1}-1} \varphi _{q_{1}} \biggl( \int _{a}^{b} \overline{H}_{1}(s, \tau )\,d\tau \biggr)\,ds\right . \\ &\left .{} +l_{2} \int _{0}^{1}\varrho (1-s)^{\alpha _{2}-1} \varphi _{q _{2}} \biggl( \int _{a}^{b} \overline{H}_{2}(s, \tau )\,d\tau \biggr)\,ds\right ) \\ =&r= \bigl\Vert (u, v) \bigr\Vert . \end{aligned}$$
(3.8)

Therefore, we obtain

$$\begin{aligned} \bigl\Vert T(u, v) \bigr\Vert =\max \bigl\{ \bigl\Vert T_{1}(u, v) \bigr\Vert , \bigl\Vert T_{2}(u, v) \bigr\Vert \bigr\} \geq r= \bigl\Vert (u, v) \bigr\Vert , \quad \text{for any } (u, v)\in \partial K_{r}. \end{aligned}$$
(3.9)

(III) With the second inequality of \((\mathbf{H}_{1})\), \(f_{i\infty } \in (\varphi _{p_{i}} (\frac{l_{i}}{\omega } ), + \infty ]\), there exist real numbers \(r^{*}_{2}\), \(r^{**}_{2}\), such that

$$\begin{aligned}& \begin{aligned} &f_{1}(t, x, y)\geq \varphi _{p_{1}}(x)\varphi _{p_{1}} \biggl(\frac{l _{1}}{\omega } \biggr),\quad a\leq t\leq b, x\geq r^{*}_{2}, y\geq 0, \\ &f_{2}(t, x, y)\geq \varphi _{p_{2}}(y)\varphi _{p_{2}} \biggl(\frac{l _{2}}{\omega } \biggr),\quad a\leq t\leq b, y\geq r^{**}_{2}, x\geq 0. \end{aligned} \end{aligned}$$
(3.10)

Choose \(r_{2}=\max \{2r_{1}, \frac{r^{*}}{\omega \theta }, \frac{r ^{**}_{2}}{\omega \theta } \}\). Let \(K_{r_{2}}=\{(u, v)\in K:\|(u, v)\|< r_{2}\}\). For any \((u, v)\in \partial K_{r_{2}} \), by the definition of \(\|\cdot \|\), we have

$$\begin{aligned}& \begin{aligned}&r_{2} = \bigl\Vert (u, v) \bigr\Vert \geq u(t) \geq \omega \bigl\Vert (u, v) \bigr\Vert \geq \omega r_{2} \geq r^{*}_{2},\quad 0\leq t\leq 1, \\ &r_{2} = \bigl\Vert (u, v) \bigr\Vert \geq v(t)\geq \omega \bigl\Vert (u, v) \bigr\Vert \geq \omega r_{2} \geq r^{**}_{2},\quad 0\leq t\leq 1. \end{aligned} \end{aligned}$$
(3.11)

Thus, for any \((u, v)\in \partial K_{r_{2}}\), by (3.10), (3.11), we have

$$\begin{aligned}& \begin{aligned} &f_{1}\bigl(t, u(t), v(t)\bigr)\geq \varphi _{p_{1}}\bigl(u(t)\bigr)\varphi _{p_{1}} \biggl( \frac{l _{1}}{\omega } \biggr)\geq \varphi _{p_{1}}(\omega r_{2})\varphi _{p _{1}} \biggl(\frac{l_{1}}{\omega } \biggr),\quad a\leq t\leq b, \\ &f_{2}\bigl(t, u(t), v(t)\bigr)\geq \varphi _{p_{2}} \bigl(v(t)\bigr)\varphi _{p_{2}} \biggl(\frac{l _{2}}{\omega } \biggr)\geq \varphi _{p_{2}}(\omega r_{2})\varphi _{p _{2}} \biggl(\frac{l_{2}}{\omega } \biggr),\quad a\leq t\leq b. \end{aligned} \end{aligned}$$
(3.12)

So, for any \((u, v)\in \partial K_{r_{2}} \), by Lemmas 2.3, 2.4 and (3.12), we know

$$\begin{aligned} T_{1}(u,v) (t) \geq & \int _{0}^{1} \varrho (1-s)^{\alpha _{1}-1} \varphi _{q_{1}} \biggl( \int _{0}^{1} \overline{H}_{1}(s, \tau )f_{1}\bigl( \tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\ &{} + \int _{0}^{1}\varrho (1-s)^{\alpha _{2}-1} \varphi _{q_{2}} \biggl( \int _{0}^{1} \overline{H}_{2}(s, \tau )f_{2}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\ \geq & \int _{0}^{1} \varrho (1-s)^{\alpha _{1}-1} \varphi _{q_{1}} \biggl( \int _{a}^{b} \overline{H}_{1}(s, \tau )\varphi _{p_{1}}\bigl(u(\tau )\bigr) \varphi _{p_{1}} \biggl(\frac{l_{1}}{\omega } \biggr)\,d\tau \biggr)\,ds \\ &{} + \int _{0}^{1}\varrho (1-s)^{\alpha _{2}-1} \varphi _{q_{2}} \biggl( \int _{a}^{b} \overline{H}_{2}(s, \tau )\varphi _{p_{2}}\bigl(v(\tau )\bigr) \varphi _{p_{2}} \biggl(\frac{l_{2}}{\omega } \biggr)\,d\tau \biggr)\,ds \\ \geq & \int _{0}^{1} \varrho (1-s)^{\alpha _{1}-1} \varphi _{q_{1}} \biggl( \int _{a}^{b} \overline{H}_{1}(s, \tau )\varphi _{p_{1}}(\omega r_{2}) \varphi _{p_{1}} \biggl(\frac{l_{1}}{\omega } \biggr)\,d\tau \biggr)\,ds \\ &{} + \int _{0}^{1}\varrho (1-s)^{\alpha _{2}-1} \varphi _{q_{2}} \biggl( \int _{a}^{b} \overline{H}_{2}(s, \tau )\varphi _{p_{2}}(\omega r_{2}) \varphi _{p_{2}} \biggl(\frac{l_{2}}{\omega } \biggr)\,d\tau \biggr)\,ds \\ \geq & r_{2}\left ( l_{1} \int _{0}^{1} \varrho (1-s)^{\alpha _{1}-1} \varphi _{q_{1}} \biggl( \int _{a}^{b} \overline{H}_{1}(s, \tau )\,d\tau \biggr)\,ds\right . \\ &\left .{} +l_{2} \int _{0}^{1}\varrho (1-s)^{\alpha _{2}-1} \varphi _{q _{2}} \biggl( \int _{a}^{b} \overline{H}_{2}(s, \tau )\,d\tau \biggr)\,ds\right ) \\ =&r_{2}= \bigl\Vert (u, v) \bigr\Vert . \end{aligned}$$
(3.13)

Hence, we obtain

$$\begin{aligned} \bigl\Vert T(u, v) \bigr\Vert =\max \bigl\{ \bigl\Vert T_{1}(u, v) \bigr\Vert , \bigl\Vert T_{2}(u, v) \bigr\Vert \bigr\} \geq r_{2}= \bigl\Vert (u, v) \bigr\Vert , \quad \text{for any } (u, v)\in \partial K_{r_{2}}. \end{aligned}$$
(3.14)

It follows from the above discussion, (3.5), (3.9), (3.14), Lemmas 2.5, 2.6, that T has fixed points \((u_{1}, v _{1})\in \overline{K}_{r_{2}}\backslash K_{r}\), \((u_{2}, v_{2})\in \overline{K}_{r}\backslash K_{r_{1}}\), that is to say, system (1.1) has at least two positive solutions \((u_{1}, v_{1})\), \((u_{2}, v_{2})\), satisfying \(0<\|(u_{1}, v_{1})\|<r_{1}<\|(u_{2}, v_{2})\|\). The proof is completed. □

Theorem 3.2

Assume that \((\mathbf{H}_{0})\), \((\mathbf{H}_{2})\), \((\mathbf{H}_{4})\) hold, then system (1.1) has at least two positive solutions \((u_{1}, v_{1})\) and \((u_{2}, v_{2})\) such that \(0<\|(u_{1}, v_{1})\|<R_{1}<\|(u_{2}, v_{2})\|\).

Proof

(I) By \((\mathbf{H}_{4})\), there exist constants \(d^{*}_{i}\in (l_{i}, +\infty )\) and \(R_{1}>0\), such that

$$\begin{aligned}& f_{i}(t, x, y)\geq \varphi _{p_{i}}\bigl(d^{*}_{i} R_{1} \bigr),\quad a\leq t\leq b, \omega R_{0}\leq x, y\leq R_{1}. \end{aligned}$$
(3.15)

Let \(K_{R_{1}}=\{(u, v)\in K: \|(u, v)\|< R_{1}\}\). For any \((u, v) \in \partial K_{R_{1}}\),

$$\begin{aligned}& \begin{aligned}&R_{1} = \bigl\Vert (u, v) \bigr\Vert \geq u(t)\geq \omega \bigl\Vert (u, v) \bigr\Vert \geq \omega R_{1}, \\ &R_{1} = \bigl\Vert (u, v) \bigr\Vert \geq v(t)\geq \omega \bigl\Vert (u, v) \bigr\Vert \geq \omega R_{1}, \quad 0\leq t\leq 1. \end{aligned} \end{aligned}$$
(3.16)

Thus, for any \((u, v)\in \partial K_{R_{1}} \), by Lemmas 2.3, 2.4 and (3.15), (3.16), we get

$$\begin{aligned} T_{1}(u,v) (t) =& \int _{0}^{1} K_{1}(t, s)\varphi _{q_{1}} \biggl( \int _{0}^{1} \overline{H}_{1}(s, \tau )f_{1}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\ & {}+ \int _{0}^{1} H_{1}(t, s)\varphi _{q_{2}} \biggl( \int _{0}^{1} \overline{H}_{2}(s, \tau )f_{2}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\ \geq & \int _{0}^{1} \varrho (1-s)^{\alpha _{1}-1} \varphi _{q_{1}} \biggl( \int _{0}^{1} \overline{H}_{1}(s, \tau )f_{1}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\ &{} + \int _{0}^{1}\varrho (1-s)^{\alpha _{2}-1} \varphi _{q_{2}} \biggl( \int _{0}^{1} \overline{H}_{2}(s, \tau )f_{2}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\ \geq & \int _{0}^{1} \varrho (1-s)^{\alpha _{1}-1} \varphi _{q_{1}} \biggl( \int _{a}^{b} \overline{H}_{1}(s, \tau )\varphi _{p_{1}} \bigl(d^{*}_{1} R _{0} \bigr)\,d\tau \biggr)\,ds \\ & {}+ \int _{0}^{1}\varrho (1-s)^{\alpha _{2}-1} \varphi _{q_{2}} \biggl( \int _{a}^{b} \overline{H}_{2}(s, \tau )\varphi _{p_{2}} \bigl(d^{*}_{2} R _{0} \bigr)\,d\tau \biggr)\,ds \\ \geq & R_{1}\left ( l_{1} \int _{0}^{1} \varrho (1-s)^{\alpha _{1}-1} \varphi _{q_{1}} \biggl( \int _{a}^{b} \overline{H}_{1}(s, \tau )\,d\tau \biggr)\,ds\right . \\ &\left .{} +l_{2} \int _{0}^{1}\varrho (1-s)^{\alpha _{2}-1} \varphi _{q _{2}} \biggl( \int _{a}^{b} \overline{H}_{2}(s, \tau )\,d\tau \biggr)\,ds\right ) \\ =&R_{1}= \bigl\Vert (u, v) \bigr\Vert . \end{aligned}$$
(3.17)

So, we have

$$\begin{aligned} \bigl\Vert T(u, v) \bigr\Vert =&\max \bigl\{ \bigl\Vert T_{1}(u, v) \bigr\Vert , \bigl\Vert T_{2}(u, v) \bigr\Vert \bigr\} \\ \geq& R_{1}= \bigl\Vert (u, v) \bigr\Vert , \quad \text{for any } (u, v)\in \partial K_{R_{1}}. \end{aligned}$$
(3.18)

(II) With the first inequality of \((\mathbf{H}_{2})\), \(f^{0}_{i} \in [0, \varphi _{p_{i}}(L_{i}) )\), there exists a real number \(R_{2}\in (0, R_{1})\), such that

$$\begin{aligned}& \begin{aligned} &f_{1}(t, x, y)\leq \varphi _{p_{1}}(xL_{1})\leq \varphi _{p_{1}} (R _{2}L_{1} ),\quad 0\leq t\leq 1, 0\leq x\leq R_{2}, y\geq 0, \\ &f_{2}(t, x, y)\leq \varphi _{p_{2}}(yL_{2}) \leq \varphi _{p_{2}} (R _{2}L_{2} ),\quad 0 \leq t\leq 1, 0\leq y\leq R_{2}, x\geq 0. \end{aligned} \end{aligned}$$
(3.19)

Let \(K_{R_{2}}=\{(u, v)\in K: \|(u, v)\|< R_{2}\}\). For any \((u, v) \in \partial K_{R_{2}}\),

$$\begin{aligned}& \begin{aligned}&u(t)\leq \bigl\vert u(t) \bigr\vert \leq \Vert u \Vert \leq \bigl\Vert (u, v) \bigr\Vert \leq R_{2}, \\ & v(t)\leq \bigl\vert v(t) \bigr\vert \leq \Vert v \Vert \leq \bigl\Vert (u, v) \bigr\Vert \leq R_{2}, \quad 0\leq t\leq 1. \end{aligned} \end{aligned}$$
(3.20)

Therefore, for any \((u, v)\in \partial K_{R_{2}} \), by Lemmas 2.3, 2.4 and (3.19), (3.20), we have

$$\begin{aligned} T_{1}(u,v) (t) =& \int _{0}^{1} K_{1}(t, s)\varphi _{q_{1}} \biggl( \int _{0}^{1} \overline{H}_{1}(s, \tau )f_{1}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\ & {}+ \int _{0}^{1} H_{1}(t, s)\varphi _{q_{2}} \biggl( \int _{0}^{1} \overline{H}_{2}(s, \tau )f_{2}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\ \leq & \int _{0}^{1} \rho (1-s)^{\alpha _{1}-1}\varphi _{q_{1}} \biggl( \int _{0}^{1} \overline{H}_{1}(s, \tau )f_{1}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\ &{} + \int _{0}^{1}\rho (1-s)^{\alpha _{2}-1}\varphi _{q_{2}} \biggl( \int _{0}^{1} \overline{H}_{2}(s, \tau )f_{2}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\ \leq & \int _{0}^{1} \rho (1-s)^{\alpha _{1}-1}\varphi _{q_{1}} \biggl( \int _{0}^{1} \overline{H}_{1}(s, \tau )\varphi _{p_{1}}(R_{2}L_{1})\,d\tau \biggr)\,ds \\ &{} + \int _{0}^{1}\rho (1-s)^{\alpha _{2}-1}\varphi _{q_{2}} \biggl( \int _{0}^{1} \overline{H}_{2}(s, \tau )\varphi _{p_{2}}(R_{2}L_{2})\,d\tau \biggr)\,ds \\ \leq & R_{2}\left ( L_{1} \int _{0}^{1} \rho (1-s)^{\alpha _{1}-1} \varphi _{q_{1}} \biggl( \int _{0}^{1} \overline{H}_{1}(s, \tau )\,d\tau \biggr)\,ds\right . \\ &\left .{} +L_{2} \int _{0}^{1}\rho (1-s)^{\alpha _{2}-1}\varphi _{q_{2}} \biggl( \int _{0}^{1} \overline{H}_{2}(s, \tau )\,d\tau \biggr)\,ds\right ) \\ =&R_{2}= \bigl\Vert (u, v) \bigr\Vert . \end{aligned}$$
(3.21)

By a similar proof to (3.21), for any \((u, v)\in \partial K_{R _{2}}\), we also have

$$ \bigl\Vert T_{2}(u,v) \bigr\Vert \leq R_{2}= \bigl\Vert (u, v) \bigr\Vert . $$

Thus,

$$\begin{aligned} \bigl\Vert T(u, v) \bigr\Vert =\max \bigl\{ \bigl\Vert T_{1}(u, v) \bigr\Vert , \bigl\Vert T_{2}(u, v) \bigr\Vert \bigr\} \leq R_{2}= \bigl\Vert (u, v) \bigr\Vert , \quad (u, v)\in \partial K_{R_{2}}. \end{aligned}$$
(3.22)

(III) With the second inequality of \((\mathbf{H}_{2})\), \(f^{\infty } _{i}\in [0, \varphi _{p_{i}}(L_{i}) )\), there exists \(R^{*}>0\), such that

$$\begin{aligned}& \begin{aligned} &f_{1}(t, x, y)\leq \varphi _{p_{1}}(xL_{1}), \quad 0\leq t\leq 1, x \geq R^{*}, y\geq 0, \\ &f_{2}(t, x, y)\leq \varphi _{p_{2}}(yL_{2}), \quad 0\leq t\leq 1, y \geq R^{*}, x\geq 0. \end{aligned} \end{aligned}$$
(3.23)

Now there are two situations.

Case 1. \(f_{i}\) is bounded on \([0, +\infty )\), then we choose \(\overline{R}>0\), such that

$$\begin{aligned}& f_{i}(t, x, y)\leq \varphi _{p_{i}}( \overline{R}L_{i}),\quad 0\leq t \leq 1, x, y\geq 0, i=1, 2. \end{aligned}$$
(3.24)

Let \(R_{3}=\max \{2R_{1}, \overline{R}\}\), \(K_{R_{3}}=\{(u, v)\in K: \|(u, v)\|< R_{3}\}\). For any \((u, v)\in \partial K_{R_{3}}\), we know

$$\begin{aligned} T_{1}(u,v) (t) \leq & \int _{0}^{1} \rho (1-s)^{\alpha _{1}-1}\varphi _{q_{1}} \biggl( \int _{0}^{1} \overline{H}_{1}(s, \tau )f_{1}\bigl(\tau , u( \tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\ &{} + \int _{0}^{1}\rho (1-s)^{\alpha _{2}-1}\varphi _{q_{2}} \biggl( \int _{0}^{1} \overline{H}_{2}(s, \tau )f_{2}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\ \leq & \int _{0}^{1} \rho (1-s)^{\alpha _{1}-1}\varphi _{q_{1}} \biggl( \int _{0}^{1} \overline{H}_{1}(s, \tau )\varphi _{p_{1}}(R_{3}L_{1})\,d\tau \biggr)\,ds \\ &{} + \int _{0}^{1}\rho (1-s)^{\alpha _{2}-1}\varphi _{q_{2}} \biggl( \int _{0}^{1} \overline{H}_{2}(s, \tau )\varphi _{p_{2}}(R_{3}L_{2})\,d\tau \biggr)\,ds \\ \leq & R_{3}\left ( L_{1} \int _{0}^{1} \rho (1-s)^{\alpha _{1}-1} \varphi _{q_{1}} \biggl( \int _{0}^{1} \overline{H}_{1}(s, \tau )\,d\tau \biggr)\,ds\right . \\ &\left .{} +L_{2} \int _{0}^{1}\rho (1-s)^{\alpha _{2}-1}\varphi _{q_{2}} \biggl( \int _{0}^{1} \overline{H}_{2}(s, \tau )\,d\tau \biggr)\,ds\right ) \\ =&R_{3}= \bigl\Vert (u, v) \bigr\Vert . \end{aligned}$$
(3.25)

Similar to (3.25), for any \((u, v)\in \partial K_{R_{3}}\), we have

$$ \bigl\Vert T_{2}(u,v) \bigr\Vert \leq R_{3}= \bigl\Vert (u, v) \bigr\Vert . $$

Thus,

$$\begin{aligned}& \bigl\Vert T(u, v) \bigr\Vert =\max \bigl\{ \bigl\Vert T_{1}(u, v) \bigr\Vert , \bigl\Vert T_{2}(u, v) \bigr\Vert \bigr\} \leq R_{3}= \bigl\Vert (u, v) \bigr\Vert , \quad (u, v)\in \partial K_{R_{3}}. \end{aligned}$$
(3.26)

Case 2. \(f_{1}\) and \(f_{2}\) have at least one unbounded function, assume both \(f_{1}\) and \(f_{2}\) are unbounded. (If \(f_{1}\) or \(f_{2}\) is unbounded, the proof is similar.) Choose \(R_{3}=\max \{2R_{1}, \frac{R^{*}}{\omega } \}\), such that

$$\begin{aligned}& f_{i}(t, x, y)\leq f_{i}(t, R_{3}, R_{3}), \quad 0\leq t\leq 1, 0\leq x, y\leq R_{3}, i=1, 2. \end{aligned}$$
(3.27)

Let \(K_{R_{3}}=\{(u, v)\in K: \|(u, v)\|< R_{3}\}\). For any \((u, v) \in \partial K_{R_{3}}\), by (3.24), (3.27), we have

$$\begin{aligned} T_{1}(u,v) (t) \leq & \int _{0}^{1} \rho (1-s)^{\alpha _{1}-1}\varphi _{q_{1}} \biggl( \int _{0}^{1} \overline{H}_{1}(s, \tau )f_{1}\bigl(\tau , u( \tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\ &{} + \int _{0}^{1}\rho (1-s)^{\alpha _{2}-1}\varphi _{q_{2}} \biggl( \int _{0}^{1} \overline{H}_{2}(s, \tau )f_{2}\bigl(\tau , u(\tau ), v(\tau )\bigr)\,d\tau \biggr)\,ds \\ \leq & \int _{0}^{1} \rho (1-s)^{\alpha _{1}-1}\varphi _{q_{1}} \biggl( \int _{0}^{1} \overline{H}_{1}(s, \tau )f_{1}(\tau , R_{3}, R_{3})\,d\tau \biggr)\,ds \\ &{} + \int _{0}^{1}\rho (1-s)^{\alpha _{2}-1}\varphi _{q_{2}} \biggl( \int _{0}^{1} \overline{H}_{2}(s, \tau )f_{2}(\tau , R_{3}, R_{3})\,d\tau \biggr)\,ds \\ \leq & \int _{0}^{1} \rho (1-s)^{\alpha _{1}-1}\varphi _{q_{1}} \biggl( \int _{0}^{1} \overline{H}_{1}(s, \tau )\varphi _{p_{1}}(R_{3}L_{1})\,d\tau \biggr)\,ds \\ &{} + \int _{0}^{1}\rho (1-s)^{\alpha _{2}-1}\varphi _{q_{2}} \biggl( \int _{0}^{1} \overline{H}_{2}(s, \tau )\varphi _{p_{2}}(R_{3}L_{2})\,d\tau \biggr)\,ds \\ \leq & R_{3}\left ( L_{1} \int _{0}^{1} \rho (1-s)^{\alpha _{1}-1} \varphi _{q_{1}} \biggl( \int _{0}^{1} \overline{H}_{1}(s, \tau )\,d\tau \biggr)\,ds\right . \\ &\left .{} +L_{2} \int _{0}^{1}\rho (1-s)^{\alpha _{2}-1}\varphi _{q_{2}} \biggl( \int _{0}^{1} \overline{H}_{2}(s, \tau )\,d\tau \biggr)\,ds\right ) \\ =&R_{3}= \bigl\Vert (u, v) \bigr\Vert . \end{aligned}$$
(3.28)

Similar to (3.28), for any \((u, v)\in \partial K_{R_{3}}\), we have

$$ \bigl\Vert T_{2}(u,v) \bigr\Vert \leq R_{3}= \bigl\Vert (u, v) \bigr\Vert . $$

Thus,

$$\begin{aligned}& \bigl\Vert T(u, v) \bigr\Vert =\max \bigl\{ \bigl\Vert T_{1}(u, v) \bigr\Vert , \bigl\Vert T_{2}(u, v) \bigr\Vert \bigr\} \leq R_{3}= \bigl\Vert (u, v) \bigr\Vert , \quad (u, v)\in \partial K_{R_{3}}. \end{aligned}$$
(3.29)

Through the above discussion, (3.18), (3.22), (3.26) (or (3.29)), Lemmas 2.5, 2.6, T has fixed points \((u_{1}, v _{1})\in \overline{K}_{R_{1}}\backslash K_{R_{2}}\), \((u_{2}, v_{2}) \in \overline{K}_{R_{3}}\backslash K_{R_{1}}\), that is to say, system (1.1) has at least two positive solutions \((u_{1}, v_{1})\), \((u_{2}, v_{2})\), satisfying \(0<\|(u_{1}, v_{1})\|<R_{1}<\|(u_{2}, v _{2})\|\). The proof is completed. □

4 An example

Consider the following fractional differential system:

$$\begin{aligned}& \textstyle\begin{cases} D^{\frac{3}{2}}({}^{c}D^{\frac{5}{2}}u(t))+ f_{1}(t,u(t), v(t))=0, \\ D^{\frac{3}{2}}({}^{c}D^{\frac{5}{2}}v(t))+ f_{2}(t,u(t), v(t))=0,\quad 0< t< 1, \\ u'(0)=u''(0)=0, \qquad v'(0)=v''(0)=0, \\ u(1)=\frac{1}{2}\int _{0}^{1} s^{2}v(s)\,ds ^{\frac{1}{3}}, \qquad v(1)= \int _{0}^{1}s u(s)\,ds, \\ ^{c}D^{\frac{5}{2}}u(0)=0,\qquad {}^{c}D^{\frac{5}{2}}u(1)={\frac{1}{4}}^{c}D ^{\alpha _{1}}u (\frac{1}{2} ), \\ {}^{c}D^{\frac{5}{2}}v(0)=0,\qquad ^{c}D^{\frac{5}{2}}v(1)={\frac{1}{4}}^{c}D^{\alpha _{2}}v (\frac{1}{2} ), \end{cases}\displaystyle \end{aligned}$$
(4.1)

where \(\beta _{1}=\beta _{2}=\frac{3}{2}\), \(\alpha _{1}=\alpha _{2}= \frac{5}{2}\), \(\mu _{1}=\frac{1}{2}\), \(\mu _{2}=1\), \(A_{1}(t)=t^{ \frac{1}{3}}\), \(A_{2}(t)=t\), \(\varepsilon _{1}=\varepsilon _{2}= \frac{1}{4}\), \(\eta _{1}=\eta _{2}=\frac{1}{2}\), \(a(s)=s^{2}\), \(b(s)=s\), \(p_{1}=p_{2}=2\). Then we have

$$\begin{aligned}& k_{1}= \int _{0}^{1}a(s)\,dA_{1}(s)= \int _{0}^{1}s^{2}\,ds^{\frac{1}{3}}= \frac{1}{7}>0, \\& k_{2}= \int _{0}^{1}b(s)\,dA_{2}(s)= \int _{0}^{1}s \,ds =\frac{1}{2}>0, \\& 1-\mu _{1}\mu _{2}k_{1}k_{2}= \frac{27}{28}>0. \end{aligned}$$

Condition \((\textbf{H}_{0})\) holds. Through calculation, \(L_{1}=L _{2}=2.43299\), \(l_{1}=l_{2}=6.80274\), \(\omega =0.01953\). Choose

$$\begin{aligned}& f_{1}(t, x, y)=10^{-5}\bigl(x^{2}+y^{2} \bigr)\cos t+350\sin x, \\& f_{2}(t, x, y)=10^{-4} t\bigl(x^{2}+y^{2} \bigr)+350\sin y, \\& f_{10}=350>348.32258=\varphi _{p_{1}} \biggl( \frac{l_{1}}{\omega } \biggr), \\& f_{20}=350>348.32258=\varphi _{p_{2}} \biggl(\frac{l_{2}}{\omega } \biggr), \\& f_{1\infty }=+\infty >348.32258=\varphi _{p_{1}} \biggl( \frac{l_{1}}{ \omega } \biggr), \\& f_{2\infty }=+\infty >348.32258= \varphi _{p_{2}} \biggl(\frac{l_{2}}{\omega } \biggr). \end{aligned}$$

Take \(d_{1}=d_{2}=2\), \(r_{1}=180\), we have

$$\begin{aligned}& f_{1}(t, x, y)\leq 350.648< 360=d_{1} r_{1}, \\& f_{2}(t, x, y)\leq 356.48< 360=d _{2} r_{1}, \quad 0\leq t\leq 1, 0\leq x, y\leq 180. \end{aligned}$$

Then, by Theorem 3.1, system (4.1) has at least two positive solutions \((u_{1}, v_{1})\) and \((u_{2}, v_{2})\) such that \(0<\|(u_{1}, v_{1})\|<180<\|(u_{2}, v_{2})\|\).