Advertisement

Boundary Value Problems

, 2018:51 | Cite as

Positive solution for a fractional singular boundary value problem with p-Laplacian operator

  • Fengli Yan
  • Mingyue Zuo
  • Xinan Hao
Open Access
Research

Abstract

In this paper, we consider a fractional singular three-point boundary value problem with p-Laplacian operator. The nonlinearity \(f(t,u)\) may be singular at \(t = 0,1\) and \(u = 0\). Some properties of the associated Green function are obtained. By using the upper and lower solutions method and a fixed point theorem, the existence result of positive solution is established.

Keywords

Positive solution Fractional singular BVP p-Laplacian operator Upper and lower solutions method 

1 Introduction

In this paper, we investigate the following fractional three-point boundary value problem (BVP) with p-Laplacian operator:
$$ \textstyle\begin{cases} -D^{\alpha}_{0^{+}}(\varphi_{p}(D^{\beta}_{0^{+}}u(t)))=f(t,u(t)),\quad 0< t< 1, \\ u(0)=u(1)=u'(0)=u'(1)=0,\qquad D^{\beta}_{0^{+}}u(0)=0,\qquad D^{\beta}_{0^{+}}u(1)=bD^{\beta}_{0^{+}}u(\eta), \end{cases} $$
(1.1)
where \(\alpha\in(1,2]\), \(\beta\in(3,4]\), \(D^{\alpha}_{0^{+}}\) and \(D^{\beta}_{0^{+}}\) are the standard Riemann–Liouville derivatives, \(\varphi_{p}(s)= \vert s \vert ^{p-2}s\), \(p>1\), \(\varphi_{p}^{-1}=\varphi_{q}\), \(\frac{1}{p}+\frac{1}{q}=1\), \(\eta\in (0,1)\), \(b\in (0,\eta^{\frac{1-\alpha}{p-1}} )\), \(f(t,u): (0,1)\times(0,+\infty)\to [0,+\infty)\) is continuous and may be singular at \(t=0, 1\) and \(u=0\).

The differential equations with p-Laplacian operator have deep background in physics. In recent years, boundary value problems of fractional differential equations with or without p-Laplacian operator have been widely studied. By means of nonlinear analysis theory and methods, many existence and multiplicity results of solutions or positive solutions have been obtained, see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29] and the references therein.

In [11], Xu and Dong considered three-point BVP (1.1), but their nonlinearity \(f:[0,1]\times [0,+\infty)\to [0,+\infty)\) is continuous, the existence and uniqueness of positive solutions were obtained by using the upper and lower solutions method and Schauder’s fixed point theorem.

By means of the lower and upper solutions method and monotone iterative technique, Liu et al. [12] investigated the existence of positive solutions for mixed fractional BVP with p-Laplacian operator
$$ \textstyle\begin{cases} D^{\alpha}_{0^{+}}(\varphi_{p}(^{c}D^{\beta}_{0^{+}}u(t)))=f(t,u(t),^{c}D_{0^{+}}^{\beta}u(t)),\quad 0< t< 1, \\ ^{c}D_{0^{+}}^{\beta}u(0)=u'(0)=0,\qquad u(1)=r_{1}u(\eta),\qquad ^{c}D_{0^{+}}^{\beta}u(1)=r_{2}^{c}D_{0^{+}}^{\beta}u(\xi), \end{cases} $$
where \(\alpha, \beta\in(1,2]\), \(D^{\alpha}_{0^{+}}\) and \(^{c}D^{\beta}_{0^{+}}\) are the Riemann–Liouville fractional derivative and Caputo fractional derivative, respectively.
By using upper and lower solutions method, Wang and Xiang [13] established existence results of positive solution for a fractional BVP with p-Laplacian operator
$$ \textstyle\begin{cases} D^{\alpha}_{0^{+}}(\varphi_{p}(D^{\beta}_{0^{+}}u(t)))=f(t,u(t)),\quad 0< t< 1, \\ u(0) = 0,\qquad u(1)=au(\xi),\qquad D^{\beta}_{0^{+}}u(0)=0,\qquad D^{\beta}_{0^{+}}u(1)=bD^{\beta}_{0^{+}}u(\eta), \end{cases} $$
where \(\alpha,\beta \in(1,2]\), \(a,b \in(0,1]\), \(\xi,\eta \in(0,1)\), \(D^{\alpha}_{0^{+}}\) and \(D^{\beta}_{0^{+}}\) are the Riemann–Liouville fractional derivatives.
In [17], Zhang et al. studied the integral BVP of fractional differential equations with parameter and p-Laplacian operator
$$ \textstyle\begin{cases} -D^{\alpha}_{0^{+}}(\varphi_{p}(D^{\beta}_{0^{+}}u(t)))=\lambda f(t,u(t),\quad 0< t< 1, \\ u(0)=0,\qquad D^{\beta}_{0^{+}}u(0)=0,\qquad u(1)=\int^{1}_{0}u(s)dA(s), \end{cases} $$
where \(\alpha\in(0,1]\), \(\beta\in(1,2]\), \(D^{\alpha}_{0^{+}}\) and \(D^{\beta}_{0^{+}}\) are the Riemann–Liouville fractional derivatives, \(\int^{1}_{0}u(s)dA(s)\) is the Riemann–Stieltjes integral, \(f(t,u):(0,1)\times(0,+\infty)\rightarrow [0,+\infty)\) is continuous.

Motivated by the papers mentioned above, in this paper, we study the p-Laplacian fractional differential equation three-point BVP (1.1). The existence of positive solution is obtained by using the upper and lower solutions method and a fixed point theorem. It is worth pointing out that \(f(t,u)\) may be singular at \(t = 0,1\) and \(u = 0\).

2 Preliminaries and lemmas

Let \(\varphi_{p}(D^{\beta}_{0^{+}}u(t))=v(t)\), then \(v(0)=0\), \(v(1)=b^{p-1}v(\eta)\). We now consider the following BVP:
$$ \textstyle\begin{cases} -D^{\alpha}_{0^{+}}v(t)=y(t),\quad 0< t< 1, \\ v(0)=0,\qquad v(1)=b^{p-1}v(\eta). \end{cases} $$
(2.1)

Lemma 2.1

([11])

If\(y\in C[0,1]\), then BVP (2.1) has a unique solution
$$v(t)= \int_{0}^{1} H(t,s)y(s)\,ds, $$
where
$$\begin{aligned} &H(t,s)=h(t,s)+\frac{b^{p-1}t^{\alpha-1}}{1-b^{p-1}\eta^{\alpha-1}}h(\eta,s), \\ &h(t,s)=\frac{1}{\Gamma(\alpha)} \textstyle\begin{cases} t^{\alpha-1}(1-s)^{\alpha-1}, & 0\leq t\leq s\leq 1, \\ t^{\alpha-1}(1-s)^{\alpha-1}-(t-s)^{\alpha-1}, & 0\leq s\leq t\leq 1. \end{cases}\displaystyle \end{aligned}$$
From the above analysis, the BVP
$$ \textstyle\begin{cases} -D^{\alpha}_{0^{+}}(\varphi_{p}(D^{\beta}_{0^{+}}u(t)))=y(t),\quad 0< t< 1, \\ u(0)=u(1)=u'(0)=u'(1)=0,\qquad D^{\beta}_{0^{+}}u(0)=0,\qquad D^{\beta}_{0^{+}}u(1)=bD^{\beta}_{0^{+}}u(\eta) \end{cases} $$
is equal to
$$ \textstyle\begin{cases} D^{\beta}_{0^{+}}u(t)=\varphi_{q} (\int_{0}^{1} H(t,s)y(s)\,ds ),\quad 0< t< 1,\\ u(0)=u(1)=u'(0)=u'(1)=0. \end{cases} $$
(2.2)

Lemma 2.2

([30])

If\(y\in C[0,1]\), BVP (2.2) has a unique solution
$$u(t)= \int_{0}^{1} G(t,s)\varphi_{q} \biggl( \int_{0}^{1} H(s,\tau)y(\tau)d\tau \biggr)\,ds, $$
where
$$G(t,s)=\frac{1}{\Gamma(\beta)} \textstyle\begin{cases} t^{\beta-2}(1-s)^{\beta-2}[(s-t)+(\beta-2)(1-t)s],& 0\leq t\leq s\leq 1,\\ t^{\beta-2}(1-s)^{\beta-2}[(s-t)+(\beta-2)(1-t)s]+(t-s)^{\beta-1},& 0\leq s\leq t\leq 1. \end{cases} $$

Lemma 2.3

The functions\(H, G\in C([0,1]\times[0,1],[0,+\infty))\)have the following properties:
  1. (1)
    $$H(t,s)\leq d_{1} (1-s)^{\alpha-1},\quad t,s\in(0,1), $$
    where\(d_{1}=\frac{1}{(1-b^{p-1}\eta^{\alpha-1})\Gamma(\alpha)}\).
     
  2. (2)
    $$(\beta-2)k(t)q(s)\leq\Gamma(\beta)G(t,s)\leq M_{0}q(s),\quad t,s \in (0,1), $$
    where
    $$k(t)=t^{\beta-2}(1-t)^{2},\qquad q(s)=s^{2}(1-s)^{\beta-2}, \qquad M_{0}=\max\bigl\{ \beta-1,(\beta-2)^{2}\bigr\} . $$
     
  3. (3)
    $$G(t,s)\geq \frac{\beta-2}{M_{0}}t^{\beta-2}(1-t)^{2}G(t_{0},s), \quad t, s, t_{0}\in(0,1). $$
     

Proof

  1. (1)
    For any \(t,s\in (0,1)\),
    $$h(t,s)\leq\frac{1}{\Gamma(\alpha)}\bigl[t(1-s)\bigr]^{\alpha-1}\leq \frac{(1-s)^{\alpha-1}}{\Gamma(\alpha)}, $$
    then
    $$h(\eta,s)\leq\frac{1}{\Gamma(\alpha)}\bigl[\eta(1-s)\bigr]^{\alpha-1}. $$
    Therefore
    $$\begin{aligned} H(t,s) \leq&\frac{(1-s)^{\alpha-1}}{\Gamma(\alpha)}+\frac{b^{p-1}}{1-b^{p-1}\eta^{\alpha-1}} \frac{\eta^{\alpha-1}(1-s)^{\alpha-1}}{\Gamma(\alpha)} \\ =&\frac{(1-s)^{\alpha-1}}{\Gamma(\alpha)(1-b^{p-1}\eta^{\alpha-1})}=d_{1}(1-s)^{\alpha-1}. \end{aligned}$$
     
  2. (2)

    See Lemma 2.4(2) of [30].

     
  3. (3)
    For any \(t, s, t_{0}\in(0,1)\), we have
    $$\begin{aligned} G(t,s) \geq&\frac{(\beta-2)k(t)q(s)}{\Gamma(\beta)}\\ =&\frac{(\beta-2)k(t)}{M_{0}\Gamma(\beta)}M_{0}q(s) \\ \geq&\frac{(\beta-2)k(t)}{M_{0}\Gamma(\beta)}\Gamma(\beta)G(t_{0},s) \\ =&\frac{\beta-2}{M_{0}}t^{\beta-2}(1-t)^{2}G(t_{0},s). \end{aligned}$$
    This completes the proof.
     
 □

Remark 2.1

By Lemmas 2.2 and 2.3, if \(D^{\beta}_{0^{+}}u\geq0\) and \(u(0)=u(1)=u'(0)=u'(1)=0\), we conclude that \(u(t)\geq0\), \(t\in[0,1]\).

u is said to be a lower solution for BVP (1.1) if u satisfies the following inequality system:
$$\textstyle\begin{cases} -D^{\alpha}_{0^{+}}(\varphi_{p}(D^{\beta}_{0^{+}}u(t)))\leq f(t,u(t)),\quad 0< t< 1, \\ u(0)\leq0,\qquad u(1)\leq0,\qquad u'(0)\leq0,\qquad u'(1)\leq0,\\ -D^{\beta}_{0^{+}}u(0)\leq0,\qquad -D^{\beta}_{0^{+}}u(1)\leq -bD^{\beta}_{0^{+}}u(\eta). \end{cases} $$
Similarly, we define the upper solution for BVP (1.1) by replacing “least or equal” by “greater or equal”.

3 Main result

Theorem 3.1

Assume that the following conditions\((\mathrm{H}_{1})\)\((\mathrm{H}_{3})\)are satisfied:
\((\mathrm{H}_{1})\)

\(f(t,u)\in C((0,1)\times(0,+\infty),[0,+\infty))\)and\(f(t,u)\)is nonincreasing relative tou.

\((\mathrm{H}_{2})\)
For any constant\(\lambda>0\),
$$0< \int^{1}_{0} (1-s)^{\alpha-1}f\bigl(s,\lambda s^{\beta-2}(1-s)^{2}\bigr)\,ds< +\infty. $$
\((\mathrm{H}_{3})\)
There exist a function\(a\in C[0,1]\)and a constant\(k>0\)such that\(a(t)\geq kt^{\beta-2}(1-t)^{2}\), \(t\in[0,1]\), and
$$\begin{aligned} & \int^{1}_{0}G(t,r)\varphi_{q} \biggl( \int^{1}_{0}H(r,s)f\bigl(s,a(s)\bigr)\,ds \biggr)\,dr=b(t)\geq a(t), \\ & \int^{1}_{0}G(t,r)\varphi_{q} \biggl( \int^{1}_{0}H(r,s)f\bigl(s,b(s)\bigr)\,ds \biggr)\,dr \geq a(t). \end{aligned}$$
Then BVP (1.1) has at least one positive solutionwwhich satisfies\(w(t)\geq mt^{\beta-2}\times(1-t)^{2}\)for some\(m>0\).

Proof

Let
$$P= \bigl\{ u\in C[0,1]: \mbox{there exists }k_{u}>0\mbox{ such that }u(t) \geq k_{u}t^{\beta-2}(1-t)^{2}, t\in[0,1] \bigr\} . $$
Define an operator T by
$$Tu(t)= \int^{1}_{0}G(t,r)\varphi_{q} \biggl( \int^{1}_{0}H(r,s)f\bigl(s,u(s)\bigr)\,ds \biggr)\,dr, \quad u\in P. $$
For \(u\in P\), there exists \(k_{u}>0\) such that \(u(t)\geq k_{u}t^{\beta-2}(1-t)^{2}\), \(t\in[0,1]\). By \((H_{1})\) and \((H_{2})\), we have
$$\int^{1}_{0}H(t,s)f\bigl(s,u(s)\bigr)\,ds\leq d_{1} \int^{1}_{0}(1-s)^{\alpha-1}f \bigl(s,k_{u}s^{\beta-2}(1-s)^{2}\bigr)\,ds< +\infty. $$
Hence
$$\begin{aligned} Tu(t) =& \int^{1}_{0}G(t,r)\varphi_{q} \biggl( \int^{1}_{0}H(r,s)f\bigl(s,u(s)\bigr)\,ds \biggr)\,dr \\ \leq& \int^{1}_{0}\frac{M_{0}}{\Gamma(\beta)}q(r) \varphi_{q} \biggl( \int^{1}_{0}d_{1}(1-s)^{\alpha-1}f \bigl(s,k_{u}s^{\beta-2}(1-s)^{2}\bigr)\,ds \biggr)\,dr \\ =&\frac{M_{0}}{\Gamma(\beta)}d_{1}^{q-1} \int^{1}_{0}q(r)\,dr\varphi_{q} \biggl( \int^{1}_{0}(1-s)^{\alpha-1}f \bigl(s,k_{u}s^{\beta-2}(1-s)^{2}\bigr)\,ds \biggr)< + \infty. \end{aligned}$$
(3.1)
On the other hand, choose \(t_{0}\in(0,1)\) such that \(Tu(t_{0})=k_{T_{u}}>0\). It follows from Lemma 2.3 that
$$\begin{aligned} Tu(t) =& \int^{1}_{0}G(t,r)\varphi_{q} \biggl( \int^{1}_{0}H(r,s)f\bigl(s,u(s)\bigr)\,ds \biggr)\,dr \\ \geq&\frac{\beta-2}{\Gamma(\beta)}k(t) \int^{1}_{0}q(r)\varphi_{q} \biggl( \int^{1}_{0}H(r,s)f\bigl(s,u(s)\bigr)\,ds \biggr)\,dr \\ \geq&\frac{\beta-2}{M_{0}}k(t)Tu(t_{0}) =\frac{\beta-2}{M_{0}}k_{T_{u}}t^{\beta-2}(1-t)^{2}, \quad t\in[0,1]. \end{aligned}$$
(3.2)
It follows from (3.1) and (3.2) that T is well defined and \(T(P)\subset P\).
Next, we determine upper and lower solutions of BVP (1.1). In fact, by simple computations, we have
$$\begin{aligned} &{-}D^{\alpha}_{0^{+}}\bigl(\varphi_{p} \bigl(D^{\beta}_{0^{+}}\bigl(Tu(t)\bigr)\bigr)\bigr)=f\bigl(t,u(t) \bigr),\quad t\in(0,1), \end{aligned}$$
(3.3)
$$\begin{aligned} & \textstyle\begin{cases} (Tu)(0)=(Tu)(1)=(Tu)'(0)=(Tu)'(1)=0,\\ D^{\beta}_{0^{+}}(Tu)(0)=0,\qquad D^{\beta}_{0^{+}}(Tu)(1)=bD^{\beta}_{0^{+}}(Tu)(\eta). \end{cases}\displaystyle \end{aligned}$$
(3.4)
Let \(b(t)=Ta(t)\), then by \((H_{1})\) and \((H_{3})\), we have
$$ a(t)\leq Ta(t)=b(t),\qquad b(t)=Ta(t)\geq Tb(t),\quad t\in[0,1]. $$
(3.5)
Since \(a(t)\in P\), from (3.2), we obtain \(Ta(t),Tb(t)\in P\). Thus, by (3.3) and (3.5),
$$\begin{aligned} &{-}D^{\alpha}_{0^{+}}\bigl(\varphi_{p} \bigl(D^{\beta}_{0^{+}}(Tb) (t)\bigr)\bigr)-f\bigl(t,(Tb) (t)\bigr) \leq-D^{\alpha}_{0^{+}}\bigl(\varphi_{p} \bigl(D^{\beta}_{0^{+}}(Tb) (t)\bigr)\bigr)-f\bigl(t,b(t)\bigr)=0, \end{aligned}$$
(3.6)
$$\begin{aligned} &{-}D^{\alpha}_{0^{+}}\bigl(\varphi_{p} \bigl(D^{\beta}_{0^{+}}(Ta) (t)\bigr)\bigr)-f\bigl(t,(Ta) (t)\bigr) \geq-D^{\alpha}_{0^{+}}\bigl(\varphi_{p} \bigl(D^{\beta}_{0^{+}}(Ta) (t)\bigr)\bigr)-f\bigl(t,a(t)\bigr)=0. \end{aligned}$$
(3.7)
Meanwhile, (3.4) implies that \(Ta(t), Tb(t)\) satisfy the boundary conditions of BVP (1.1). Then, from (3.5)–(3.7), \(\varphi(t)=Tb(t)\) and \(\psi(t)=Ta(t)\) are lower and upper solutions of BVP (1.1), respectively.
Next, we shall show that the BVP
$$ \textstyle\begin{cases} -D^{\alpha}_{0^{+}}(\varphi_{p}(D^{\beta}_{0^{+}}u(t)))=g(t,u(t)),\quad 0< t< 1, \\ u(0)=u(1)=u'(0)=u'(1)=0,\qquad D^{\beta}_{0^{+}}u(0)=0,\qquad D^{\beta}_{0^{+}}u(1)=bD^{\beta}_{0^{+}}u(\eta) \end{cases} $$
(3.8)
has a positive solution, where
$$ g\bigl(t,u(t)\bigr)= \textstyle\begin{cases} f(t,\varphi(t)),& u(t)< \varphi(t), \\ f(t,u(t)),& \varphi(t)\leq u(t)\leq \psi(t),\\ f(t,\psi(t)),& u(t)>\psi(t). \end{cases} $$
(3.9)
To see this, we consider the operator \(A:C[0,1]\rightarrow C[0,1]\) defined as follows:
$$Au(t)= \int^{1}_{0}G(t,r)\varphi_{q} \biggl( \int^{1}_{0}H(r,s)g\bigl(s,u(s)\bigr)\,ds \biggr)\,dr. $$
It is well known that a fixed point of the operator A is a solution of BVP (3.8).
It is clear that A is continuous. Since \(\varphi(t)\in P\), there exists \(k_{\varphi}>0\) such that \(\varphi(t)\geq k_{\varphi}t^{\beta-2}(1-t)^{2}\), \(t\in[0,1]\). It follows from \((H_{2})\) that
$$\begin{aligned} \int^{1}_{0}H(t,s)g\bigl(s,u(s)\bigr)\,ds&\leq d_{1} \int^{1}_{0}(1-s)^{\alpha-1}f\bigl(s,\varphi(s) \bigr)\,ds \\ &\leq d_{1} \int^{1}_{0}(1-s)^{\alpha-1}f \bigl(s,k_{\varphi}s^{\beta-2}(1-s)^{2}\bigr)\,ds< +\infty. \end{aligned}$$
(3.10)
Consequently, for \(u\in C[0,1]\) and \(t\in [0,1]\), by (3.9) and (3.10), we have
$$\begin{aligned} Au(t) =& \int^{1}_{0}G(t,r)\varphi_{q} \biggl( \int^{1}_{0}H(r,s)g\bigl(s,u(s)\bigr)\,ds \biggr)\,dr \\ \leq& M_{0} \int^{1}_{0}q(r)\varphi_{q} \biggl( \int^{1}_{0}d_{1}(1-s)^{\alpha-1}g \bigl(s,u(s)\bigr)\,ds \biggr)\,dr \\ \leq& M_{0}d_{1}^{q-1} \int^{1}_{0} q(r)\,dr\varphi_{q} \biggl( \int^{1}_{0}(1-s)^{\alpha-1}f \bigl(s,k_{\varphi}s^{\beta-2}(1-s)^{2}\bigr)\,ds \biggr)< + \infty, \end{aligned}$$
which implies that A is uniformly bounded.
On the other hand, since \(G(t,s)\) is continuous on \([0,1]\times[0,1]\), it is uniformly continuous on \([0,1]\times[0,1]\). Thus, for \(s\in[0,1]\) and for each \(\varepsilon>0\), there exists \(\delta>0\) such that \(\vert t_{1}-t_{2} \vert <\delta\) implies
$$\bigl\vert G(t_{1},s)-G(t_{2},s) \bigr\vert < \frac{\varepsilon}{\varphi_{q} (d_{1}\int^{1}_{0}(1-s)^{\alpha-1}f(s,k_{\varphi}s^{\beta-2}(1-s)^{2})\,ds )}. $$
Furthermore, for \(u\in C[0,1]\),
$$\begin{aligned} & \bigl\vert Au(t_{1})-Au(t_{2}) \bigr\vert \\ &\quad \leq \int^{1}_{0} \bigl\vert G(t_{1},r)-G(t_{2},r)) \bigr\vert \varphi_{q} \biggl( \int^{1}_{0}H(r,s)g\bigl(s,u(s)\bigr)\,ds \biggr)\,dr \\ &\quad \leq \int^{1}_{0} \bigl\vert G(t_{1},r)-G(t_{2},r) \bigr\vert \varphi_{q} \biggl( \int^{1}_{0}d_{1}(1-s)^{\alpha-1}f \bigl(s,\varphi(s)\bigr)\,ds \biggr)\,dr \\ &\quad \leq \int^{1}_{0} \bigl\vert G(t_{1},r)-G(t_{2},r) \bigr\vert \,dr\varphi_{q} \biggl(d_{1} \int^{1}_{0}(1-s)^{\alpha-1}f \bigl(s,k_{\varphi}s^{\beta-2}(1-s)^{2}\bigr)\,ds \biggr)< \varepsilon, \end{aligned}$$
which implies that A is equicontinuous. Thus, the Ascoli–Arzela theorem guarantees A is a compact operator. It follows from Schauder’s fixed point theorem that A has a fixed point w, i.e., \(w=Aw\). Consequently, (3.8) has a solution.
Finally, we will show that BVP (1.1) has at least one positive solution. In fact, we only need to prove that \(\varphi(t)\leq w(t)\leq\psi(t)\), \(t\in[0,1]\). By \((H_{1})\), we have
$$ f\bigl(t,\psi(t)\bigr)\leq g\bigl(t,w(t)\bigr)\leq f\bigl(t, \varphi(t)\bigr),\quad t\in[0,1]. $$
(3.11)
It follows from (3.5) and \((H_{3})\) that
$$ f\bigl(t,b(t)\bigr)\leq g\bigl(t,w(t)\bigr)\leq f\bigl(t,a(t) \bigr),\quad t\in[0,1]. $$
(3.12)
Since \(a(t)\in P\), by (3.3), we have
$$-D^{\alpha}_{0^{+}}\bigl(\varphi_{p} \bigl(D^{\beta}_{0^{+}}\psi(t)\bigr)\bigr)=-D^{\alpha}_{0^{+}} \bigl(\varphi_{p}\bigl(D^{\beta}_{0^{+}}(Ta) (t)\bigr) \bigr)=f\bigl(t,a(t)\bigr),\quad t\in(0,1). $$
By (3.4), (3.5), (3.11), and (3.12), we have
$$\begin{aligned} &{-}D^{\alpha}_{0^{+}}\bigl(\varphi_{p} \bigl(D^{\beta}_{0^{+}}\psi(t)\bigr)\bigr)-\bigl[-D^{\alpha}_{0^{+}} \bigl(\varphi_{p}\bigl(D^{\beta}_{0^{+}}w(t)\bigr)\bigr) \bigr]=f\bigl(t,a(t)\bigr)-g\bigl(t,w(t)\bigr)\geq0,\quad t\in[0,1], \\ &(\psi-w) (0)=(\psi-w) (1)=(\psi-w)'(0)=(\psi-w)'(1)=0, \\ &D^{\beta}_{0^{+}}(\psi-w) (0)=0,\qquad D^{\beta}_{0^{+}}( \psi-w) (1)=bD^{\beta}_{0^{+}}(\psi-w) (\eta). \end{aligned}$$
Setting \(z=\varphi_{p}(D^{\beta}_{0^{+}}\psi(t))-\varphi_{p}(D^{\beta}_{0^{+}}w(t))\), then
$$\begin{aligned} &{-}D^{\alpha}_{0^{+}}z(t)=-D^{\alpha}_{0^{+}}\bigl( \varphi_{p}\bigl(D^{\beta}_{0^{+}}\psi(t)\bigr)\bigr)- \bigl[-D^{\alpha}_{0^{+}}\bigl(\varphi_{p} \bigl(D^{\beta}_{0^{+}}w(t)\bigr)\bigr)\bigr]\geq0, \\ &z(0)=0,\quad z(1)=\varphi_{p}(b)z(\eta). \end{aligned}$$
Hence, by Lemma 2.1, we get \(z(t)\geq0\), \(t\in[0,1]\). Since \(\varphi_{p}\) is monotone increasing, we have \(D^{\beta}_{0^{+}}\psi(t)\geq D^{\beta}_{0^{+}}w(t)\), that is, \(D^{\beta}_{0^{+}}(\psi(t)-w(t))\geq0\), \(t\in[0,1]\). By Remark 2.1, we have \(w(t)\leq\psi(t)\) for \(t\in[0,1]\). Similarly, \(w(t)\geq\varphi(t)\) on \([0,1]\). Therefore, \(w(t)\) is a positive solution of BVP (1.1). And \(\varphi(t)\in P\) implies that there exists \(m>0\) such that \(w(t)\geq\varphi(t)\geq mt^{\beta-2}(1-t)^{2}\), \(t\in[0,1]\). This completes the proof. □

4 An example

Example 4.1

Consider the following fractional singular BVP:
$$ \textstyle\begin{cases} -D^{\frac{3}{2}}_{0^{+}}(\varphi_{p}(D^{\frac{7}{2}}_{0^{+}}u(t)))=(1-t)^{-\frac{1}{4}}u^{-\frac{1}{2}},\quad 0< t< 1, \\ u(0)=u(1)=u'(0)=u'(1)=0,\qquad D^{\frac{7}{2}}_{0^{+}}u(0)=0,\qquad D^{\frac{7}{2}}_{0^{+}}u(1)=\frac{1}{4}D^{\frac{7}{2}}_{0^{+}}u (\frac{1}{2} ), \end{cases} $$
(4.1)
where \(\varphi_{p}(t)= \vert t \vert ^{p-2}t\), \(p>1\). Then BVP (4.1) has a positive solution \(w(t)\geq m t^{\frac {3}{2}}(1-t)^{2}\) for some \(m>0\).
In fact, let \(\alpha=\frac{3}{2}\), \(\beta=\frac{7}{2}\), \(f(t,u)=(1-t)^{-\frac{1}{4}}u^{-\frac{1}{2}}\), \(t\in(0,1)\). Obviously, \(f(t,u)\) is singular at \(t =1\) and \(u = 0\). It is easy to check that \((H_{1})\) in Theorem 3.1 is satisfied. For any constant \(\lambda>0\),
$$\begin{aligned} 0 < & \int^{1}_{0} (1-s)^{\alpha-1}f\bigl(s,\lambda s^{\beta-2}(1-s)^{2}\bigr)\,ds \\ =& \int^{1}_{0} (1-s)^{\frac{1}{2}}(1-s)^{-\frac{1}{4}} \bigl[\lambda s^{\frac{3}{2}}(1-s)^{2}\bigr]^{-\frac{1}{2}}\,ds \\ =&\lambda^{-\frac{1}{2}} \int^{1}_{0} s^{-\frac{3}{4}}(1-s)^{-\frac{3}{4}}\,ds \\ =&\lambda^{-\frac{1}{2}}B \biggl(\frac{1}{4},\frac{1}{4} \biggr)= \lambda^{-\frac{1}{2}}\frac{\Gamma^{2}(\frac{1}{4})}{\sqrt{\pi}}< +\infty, \end{aligned}$$
so \((H_{2})\) in Theorem 3.1 is satisfied.
Set \(\mu=\frac{1}{2}\), then \(f(t,u)\leq f(t,ru)\leq r^{-\mu}f(t,u)\) for any \(r\in (0,1)\). Since \(e(t)=t^{\frac{3}{2}}(1-t)^{2}\in P\), by (3.2) we know \(Te\in P\), \(T^{2}e\in P\), then there exist positive numbers k and l such that \(Te\geq ke\) and \(T^{2}e\geq le\). Take \(0< r_{0}< \min \{1,k,l^{\frac{1}{1-\mu^{2}}} \}\), then
$$T(r_{0}e)\geq Te\geq ke \geq r_{0}e,\qquad T^{2}(r_{0}e)\geq r_{0}^{\mu^{2}}T^{2}e \geq r_{0}^{\mu^{2}}le\geq r_{0}e. $$
If we take \(a(t)=r_{0}t^{\frac{3}{2}}(1-t)^{2}\), then condition \((H_{3})\) of Theorem 3.1 is satisfied. Consequently, the above conclusion is guaranteed by Theorem 3.1.

5 Conclusion

In this paper, we consider the fractional singular three-point boundary value problem with p-Laplacian operator. It is worth pointing out that \(f(t,u)\) may be singular at \(t = 0,1\) and \(u = 0\). Some properties of the associated Green function are obtained. By using the upper and lower solutions method and a fixed point theorem, the existence result of positive solution is established.

Notes

Acknowledgements

The authors would like to thank the referees for their pertinent comments and valuable suggestions.

Availability of data and materials

Not applicable.

Authors’ contributions

All authors contributed equally to the writing of this paper. The authors read and approved the final manuscript.

Funding

This work is supported financially by the National Natural Science Foundation of China (11501318), the China Postdoctoral Science Foundation (2017M612230) and the Natural Science Foundation of Shandong Province of China (ZR2017MA036).

Competing interests

The authors declare that they have no competing interests.

References

  1. 1.
    Chen, T., Liu, W., Hu, Z.: A boundary value problem for fractional differential equation with p-Laplacian operator at resonance. Nonlinear Anal. 75, 3210–3217 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Tan, J., Cheng, C.: Existence of solutions of boundary value problems for fractional differential equations with p-Laplacian operator in Banach spaces. Numer. Funct. Anal. Optim. 38, 738–753 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Shen, T., Liu, W., Shen, X.: Existence and uniqueness of solutions for several BVPs of fractional differential equations with p-Laplacian operator. Mediterr. J. Math. 13, 4623–4637 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dong, X., Bai, Z., Zhang, S.: Positive solutions to boundary value problems of p-Laplacian with fractional derivative. Bound. Value Probl. 2017, 5 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Liang, S., Zhang, J.: Existence and uniqueness of positive solutions for integral boundary problems of nonlinear fractional differential equations with p-Laplacian operator. Rocky Mt. J. Math. 44, 953–974 (2014) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Liu, Z., Lu, L.: A class of BVPs for nonlinear fractional differential equations with p-Laplacian operator. Electron. J. Qual. Theory Differ. Equ. 2012, 70 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hao, X., Wang, H., Liu, L., Cui, Y.: Positive solutions for a system of nonlinear fractional nonlocal boundary value problems with parameters and p-Laplacian operator. Bound. Value Probl. 2017, 182 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jafari, H., Baleanu, D., Khan, H., Khan, R.A., Khan, A.: Existence criterion for the solutions of fractional order p-Laplacian boundary value problems. Bound. Value Probl. 2015, 164 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Guo, X.: Existence of unique solution to switched fractional differential equations with p-Laplacian operator. Turk. J. Math. 39, 864–871 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ding, Y., Wei, Z., Xu, J., O’Regan, D.: Extremal solutions for nonlinear fractional boundary value problems with p-Laplacian. J. Comput. Appl. Math. 288, 151–158 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Xu, J., Dong, W.: Existence and uniqueness of positive solutions for a fractional boundary value problem with p-Laplacian operator. Acta Math. Sin. (Chin. Ser.) 59, 385–396 (2016) MathSciNetzbMATHGoogle Scholar
  12. 12.
    Liu, X., Jia, M., Ge, W.: The method of lower and upper solutions for mixed fractional four-point boundary value problem with p-Laplacian operator. Appl. Math. Lett. 65, 56–62 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Wang, J., Xiang, H.: Upper and lower solutions method for a class of singular fractional boundary value problems with p-Laplacian operator. Abstr. Appl. Anal. 2010, Article ID 971824 (2010) MathSciNetzbMATHGoogle Scholar
  14. 14.
    Wang, Y., Liu, L., Wu, Y.: Extremal solutions for p-Laplacian fractional integro-differential equation with integral conditions on infinite intervals via iterative computation. Adv. Differ. Equ. 2015, 24 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Wang, Y., Jiang, J.: Existence and nonexistence of positive solutions for the fractional coupled system involving generalized p-Laplacian. Adv. Differ. Equ. 2017, 337 (2017) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Li, S., Zhang, X., Wu, Y., Caccetta, L.: Extremal solutions for p-Laplacian differential systems via iterative computation. Appl. Math. Lett. 26, 1151–1158 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zhang, X., Liu, L., Wiwatanapataphee, B., Wu, Y.: The eigenvalue for a class of singular p-Laplacian fractional differential equations involving the Riemann-Stieltjes integral boundary condition. Appl. Math. Comput. 235, 412–422 (2014) MathSciNetzbMATHGoogle Scholar
  18. 18.
    Ren, T., Li, S., Zhang, X., Liu, L.: Maximum and minimum solutions for a nonlocal p-Laplacian fractional differential system from eco-economical processes. Bound. Value Probl. 2017, 118 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Wang, Y., Liu, L., Wu, Y.: Positive solutions for a nonlocal fractional differential equation. Nonlinear Anal. 74, 3599–3605 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Zhang, X.: Positive solutions for a class of singular fractional differential equation with infinite point boundary value conditions. Appl. Math. Lett. 39, 22–27 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hao, X., Liu, L., Wu, Y.: Positive solutions for nonlinear fractional semipositone differential equation with nonlocal boundary conditions. J. Nonlinear Sci. Appl. 9, 3992–4002 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hao, X.: Positive solution for singular fractional differential equations involving derivatives. Adv. Differ. Equ. 2016, 139 (2016) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zhang, X., Zhong, Q.: Uniqueness of solution for higher-order fractional differential equations with conjugate type integral conditions. Fract. Calc. Appl. Anal. 20, 1471–1484 (2017) MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zhang, X., Zhong, Q.: Triple positive solutions for nonlocal fractional differential equations with singularities both on time and space variable. Appl. Math. Lett. 80, 12–19 (2018) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Zou, Y., He, G.: On the uniqueness of solutions for a class of fractional differential equations. Appl. Math. Lett. 74, 68–73 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Cui, Y.: Uniqueness of solution for boundary value problems for fractional differential equations. Appl. Math. Lett. 51, 48–54 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Zou, Y., Cui, Y.: Existence results for a functional boundary value problem of fractional differential equations. Adv. Differ. Equ. 2013, 233 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Pu, R., Zhang, X., Cui, Y., Li, P., Wang, W.: Positive solutions for singular semipositone fractional differential equation subject to multipoint boundary conditions. J. Funct. Spaces 2017, Article ID 5892616 (2017) MathSciNetzbMATHGoogle Scholar
  29. 29.
    Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999) zbMATHGoogle Scholar
  30. 30.
    Xu, X., Jiang, D., Yuan, C.: Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation. Nonlinear Anal. 71, 4676–4688 (2009) MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.School of Mathematical SciencesQufu Normal UniversityQufuP.R. China

Personalised recommendations