Safety assessment of Lactobacillus reuteri IDCC 3701 based on phenotypic and genomic analysis

Abstract

Purpose

Lactobacillus reuteri is one of the most largely studied human-commensal bacteria and widely used as a form of probiotics. Safety of probiotics has become increasingly important for human consumption due to increasing health-concerns in food industry. In this study, the safety of L. reuteri IDCC 3701 isolated from human breast milk was thoroughly investigated.

Methods

Whole-genome sequence analysis was performed to identify antibiotic resistance and toxigenicity of L. reuteri IDCC 3701. Phenotypic analysis such as minimal inhibitory concentration, β-hemolysis, extracellular enzyme activity, and the production of biological amines and L/D-lactate, was investigated. Finally, acute oral toxicity test was performed to access L. reuteri IDCC 3701 safety.

Results

Although multiple resistances to gentamicin and kanamycin were observed in L. reuteri IDCC 3701, it was revealed that these resistances are intrinsic and not transferable through whole-genome analysis. In addition, various phenotypic analysis concerning hemolysis, enzyme activity, and D-lactate production did not show any negative results. Although L. reuteri IDCC 3701 harbors a histidine decarboxylase gene, no biogenic amines were detected. Finally, L. reuteri IDCC 3701 exhibited no evidence of acute toxicity according to an in vivo study.

Conclusion

Our findings demonstrate that L. reuteri IDCC 3701 is considered to be safe for human consumption as probiotics based on the in silico, in vitro and in vivo studies.

Introduction

Probiotics have recently begun to be considered as one of the most effective sources of functional foods (Byakika et al. 2019; Saarela 2019). Typically, Lactobacillus, Bifidobacterium, and Saccharomyces strains are representatives found in probiotic formulations for commercial markets (Ricci et al. 2017). Although these probiotics are prevalent in the intestine as beneficial microorganisms, they can cause adverse events such as inflammatory bowel disease in rare case (Doron and Snydman 2015). Thus, the safety evaluation of probiotic strains has become the most fundamental criterion for human consumption in the food industry (Salvetti et al. 2016). Especially, the safety of new isolated species cannot be equal to that of pre-existing species, because each of probiotic strain has strain-specific characteristics (Alayande et al. 2020; Salvetti et al. 2016). Thus, individual strain should be evaluated for safety as probiotics independently.

Lactobacillus reuteri is an obligate heterofermentative species and has been widely reported to confer multiple beneficial effects by improving gut mucosal integrity and nutrient absorption (Hou et al. 2015; Mu et al. 2018; Zheng et al. 2020). Additionally, L. reuteri has been found in a variety of hosts, including human and animals (Duar et al. 2017), and also in various body parts, including the gastrointestinal tract and breast (Böttcher et al. 2008; Valeur et al. 2004), implying that L. reuteri could be one of the most prevalent and fundamental probiotic strains.

In this study, potential risks of L. reuteri IDCC 3701, isolated from breast milk, were assessed by genomic and phenotypic analysis as well as oral acute toxicity study. As genomic analysis, antibiotic resistance genes, virulence genes and mobile elements were identified. As phenotypic analysis, hemolytic activity, enzymatic activity, biogenic amines and L-/D-lactate production, and minimum inhibitory concentrations (MICs) were investigated. Thus, this study provides a comprehensive outline for safety assessment of L. reuteri strain.

Materials and methods

L. reuteri IDCC 3701

To isolate bacteria that producing lactate, diluted breast milk samples (5 mL × 3) were spread on MRS medium (BD Difco, Frankilin Lakes, NJ, USA) containing 0.5% (w/v) CaCO3 in a static incubator (IST-4075R, SANYO, Osaka, Japan) with 0.5% CO2 at 37 °C. Then, we identified L. reuteri IDCC 3701 (ATCC BAA-2837) by 16s rRNA sequencing (GenBank no. KM453732) of a colony forming hollow. The strain was maintained MRS medium and stored in 20% (w/w) glycerol at – 80 °C for further usage.

Identification of antibiotic resistance, virulence genes, mobile elements, and biogenic amines relate genes

The whole-genome sequencing of L. reuteri IDCC 3701 was performed using a PacBio RSII instrument with an Illumina platform (Macrogen, Seoul, Korea). A nucleotides-sequence was generated by single molecule real-time (SMRT) sequencing system. Contigs were constructed by pre-assembling seed reads, by generating a consensus sequence of the mapped reads, and by correcting and filtering the reads. A consensus sequence with higher quality was obtained after error-correction of the constructed contigs by Pilon (version 1.21).

Putative virulence factors were identified with the BLASTn algorithm using the virulence factor database (VFDB; version 2020.02.13; http://www.mgc.ac.cn/VFs/) with identity > 70%, coverage > 70%, and E value < 1E−5 (Chen et al. 2005). For putative antibiotic resistance genes, the assembled sequences were compared to the reference antibiotic resistance gene sequences in the ResFinder database (https://cge.cbs.dtu.dk/services/ResFinder/) using ResFinder 3.2 software. The search parameters for the analysis were sequence identity > 80% and coverage > 60% (Zankari et al. 2012). Prophage regions were identified using PHASTER web-based program (Arndt et al. 2016). Transposases and conjugal transfer proteins were annotated using the BLASTP against on transposases and conjugal transfer proteins retrieved from GenBank. The genomic islands were predicted using the GIPSy program (Soares et al. 2016).

It has been reported that histidine decarboxylase, tyrosine decarboxylase, lysine decarboxylase, ornithine decarboxylase, phenylalanine decarboxylase, and the enzymes involved in agmatine deiminase pathway such as N-carbamoylputrescine amidase and agmatinase were the key enzymes for biosynthesis of biogenic amines (Gardini et al. 2016). After building profile hidden Markov models (HMMs) representing the conserved amino acid sequence patterns in these enzymes, the candidate biogenic amine biosynthesis genes on the IDCC 3701 genome were searched using the hmmsearch tool in HMMER package (Eddy 2011) with the constructed profile HMMs. The candidate genes were confirmed using BLASTP tool in NCBI BLAST+ and hmmscan tool in HMMER package against SWISS-PROT database and PFAM database, respectively.

Determination of minimal inhibitory concentrations (MICs)

L. reuteri IDCC 3701 was assessed for susceptibility to a variety of antibiotics including ampicillin, vancomycin, gentamicin, kanamycin, streptomycin, erythromycin, clindamycin, tetracycline, and chloramphenicol (Sigma-Aldrich, St. Louis, MO, USA), which are typically used to treat enterococcal infections (Wiegand et al. 2008). The plate was then incubated at 37 °C anaerobically for 18 h and the optical density was observed using a microplate reader (BioTek, Winooski, VT, USA).

β-Hemolytic and enzymatic activities

Overnight culture of L. reuteri IDCC 3701 was streaked on Sheep blood agar plates (BD Difco) and incubated at 37°C overnight. Then, the hemolytic potential of L. reuteri IDCC 3701 was evaluated by observing the cleared zones around the colonies. Staphylococcus aureus ATCC 25923 which was incubated in blood-based brain heart infusion (BHI) medium at 37 °C was used as a positive control for β-hemolysis by culturing on sheep blood agar plates.

Enzymatic activities were investigated using the API ZYM Kit (BioMérieux, Marcy-l'Etoile, France). In brief, 1.8 × 109 CFU/mL of L. reuteri IDCC 3701 was incubated in MRS medium at 37 °C for 4 h prior to loading into the API ZYM strips. Then, one drop of each of ZYM-A and ZYM-B reagents were added to each well. After 5 min, color changes were observed and compared to the color reaction chart.

Biogenic amines and D-/L-lactate production

Biogenic amines were measured according to Priyadarshani and Rakshit 2011. Briefly, the supernatant from overnight cultured L. reuteri IDCC 3701 was collected after centrifugation at 2300×g and 4 °C for 30 min and filtered with a 0.22-μm-pore size membrane. Prior to the quantification of the biogenic amines (BAs), 0.75 mL of supernatant was mixed with the equivalent of 0.1 M HCl and filtered with a 0.45-μm membrane to extract the BAs. Then, 1 mL of the extracted BAs was incubated in a water bath at 70 °C for 10 min, followed by the addition of 200 μL of saturated NaHCO3, 20 μL of 2 M NaOH, and 0.5 mL of dansyl chloride (10 mg/mL acetone). The derivatized BAs were mixed with 200 μL of proline (100 mg/mL H2O) and incubated in the dark at room temperature for 15 min. Acetonitrile (HPLC grade; Sigma-Aldrich) was added to the mixture to a total volume of 5 mL. The derivatized BAs were separated and quantified by HPLC (LC-NETII/ADC, Jasco, Macclesfield, UK) using an Athena C18 column (4.6 mm × 250 mm, ANPEL Laboratory Technologies, Shanghai, China) and a UV detector (UV-2075 plus, Jasco, Macclesfield, UK) at 254 nm. Aqueous acetonitrile solution (67:33 of H2O, v/v) was used as a mobile phase at a constant flow rate of 0.8 mL/min. Tyramine, histamine, putrescine, 2-phenethylamine, and cadaverine were used as standards.

For the analysis of lactate, the supernatant from overnight cultured L. reuteri IDCC 3701 was collected by centrifugation at 2300×g and 4 °C for 30 min and then filtered with a 0.22-μm-pore size membrane. The quantities of L- and D-lactate in the supernatants were measured using an assay kit (Megazyme, Bray, Ireland) according to the manufacturer’s protocol.

Acute oral toxicity in rats

All the rats were bred in Korea Testing and Research Institute (KTR; Hwasun-gun, Jeollanam-do, Korea) facilities which was maintained in an ambient temperature of 20.6–23.4 °C with a relative humidity of 47.6–59.7% on an automatically controlled 12/12 light cycle (lights off at 20:00 h) using 150–300 Lux. Less than 3 rats were in (310 W × 50 D × 20 H) mm cage and rats had free access to food (Rodent Diet 20 5053; Labdiet, St. Louis, MO, USA) and sufficient water. All efforts were made to minimize animal suffering and distress and the number of animals required for the production of reliable scientific data. The animal experiments (acute oral toxicity (AOT) test) in this study were conducted by KTR (TGK-2020-000008) under Animal protection act (no. 14651) and Laboratory animal act (no. 15278) by Korea government. Among four groups of three female rats (two groups aged nine weeks and two groups aged 10 weeks), each group was orally treated with 10 mL of L. reuteri IDCC 3701 (13.8 × 1010 CFU/g) per kg body weight (BW) (i.e., 300 mg/kg BW or 2000 mg/kg BW). After observation of the clinical signs of morbidity, mortality, and BW during the 14 days (i.e., at the end of experimentation), animals were euthanized via isoflurane anesthesia.

Results and discussion

Whole genome analysis and determination of MICs

The whole-genome sequence of L. reuteri IDCC 3701 indicated that this strain harbors only chromosomal DNA without plasmid and the total length of the genome was about 2.09 million base pairs with a GC content of 38.87% and 2,087 functional genes (CDS) (Supplementary Fig. 1, Table 1).

Table 1 Genome information of L. reuteri IDCC 3701

For in silico safety analysis, we analyzed potential antibiotic resistance genes virulence factors, and mobile elements of L. reuteri IDCC 3701. On the basis of the BLASTn algorithm and the VFDB, no putative virulence gene was identified in L. reuteri IDCC 3701. In addition, no genes related to antibiotic resistance associated with aminoglycosides, beta-lactams, colistin, fosfomycin, fusidic acid, macrolides, nitroimidazole, oxazolidinone, phenicols, quinolones, rifampicin, sulphonamides, tetracyclines, trimethoprim, or glycopeptides were identified in the genome of L. reuteri IDCC 3701 (Table 2). Furthermore, mobile elements, such as transposes (64 genes), genomic island (15 genes), and prophage (0 gene) in the genome were analyzed in order to predict the possibility of antibiotic resistance gene transfer. However, these genes were meaningless due to absence of potential antibiotic resistance gene. Next, MICs of L. reuteri IDCC 3701 against nine antibiotics were analyzed to verify the safety of this strain. In results, L. reuteri IDCC 3701 was susceptible to all of the antibiotics, except for gentamicin and kanamycin (Table 2). The observed MICs for gentamicin and kanamycin were 2-fold and 4-fold dilution above the EFSA cut-off value, respectively.

Table 2 Minimal inhibitory concentrations and antibiotic resistance gene of L. reuteri IDCC 3701

In this study, L. reuteri IDCC 3701 exhibited to be susceptible to all of the antibiotics, except for gentamicin and kanamycin (Table 2). Thus, the resistance against gentamicin and kanamycin seems to be intrinsic traits of this strain. Indeed, many Lactobacillus species have been found to be relatively tolerant to aminoglycoside antibiotics, such as gentamicin, kanamycin, and streptomycin (Danielsen and Wind 2003). This intrinsic resistance mechanism species might be due to membrane properties of these bacteria (Campedelli et al. 2018). In conclusion, L. reuteri IDCC 3701 has demonstrated to be safety with regard to antibiotic resistance.

β-Hemolytic and enzymatic activities

β-Hemolytic activity, which is a representative virulence factor enrolling in pathogenic invasion process to a host, should be absent in a probiotic strain to ensure safety. In this study, L. reuteri IDCC 3701 showed no hemolytic activity (γ-hemolytic, no clear zone), while S. aureus ATCC 25923, a positive control, clearly showed β-hemolytic activity (a clear zone) on blood-based BHI agar (Supplementary Fig. 2). Enzyme activities involved in carbohydrate metabolism (α-galactosidase, β-galactosidase, and α-galactosidase), lipid metabolism (esterase), and vitamin metabolism (acid phosphatase) were detected in L. reuteri IDCC 3701 (Table 3). Although β-glucosidase hydrolyzes glucose conjugates to generate beneficial secondary metabolites in the colon, it was also reported to produce potential carcinogenic compounds in rare cases (Cole and Fuller 1987). Meanwhile, β-glucuronidase which might directly link to carcinogenic compounds and thereby increase risk for colorectal cancer (Kim and Jin 2001), were not detected in L. reuteri IDCC 3701.

Table 3 Enzymatic activities of L. reuteri IDCC 3701

Biogenic amines and lactate production

Biogenic amines (BAs) production has been reported in some lactic acid bacteria (Beneduce et al. 2010; Özogul and Özogul, 2019; Spano et al. 2010). Large quantity of BAs is regarded as a potential health risk factor due to their toxicological effects (Spano et al. 2010). Histamine and tyramine are responsible for food-induced migraine, hypertensive crisis, and scombroid food poisoning (histamine intoxication) (Özogul and Özogul, 2019). Thus, profile search and homology search were performed using HMMER and BLAST algorithms. The genome harbors one gene (IDCC3701_1_01385) encoding a histidine decarboxylase. The gene has the high similarity with the reference sequence (86.8% of P00862 from Lactobacillus sp. 30A (GenBank Acc. No. AAB59151)) that was experimentally confirmed (Vanderslice et al. 1986). However, it was confirmed that other biosynthesis enzymes containing the tyrosine decarboxylase were not presented in this genome. Furthermore, in the supernatant of L. reuteri IDCC 3701, no biogenic amines such as tyramine, histamine putrescine, cadaverine, and 2-phenethylamine were detected in this strain (data not shown).

Some lactic acid bacteria can produce a mixture of L- and D-lactate (Stiles and Holzapfel 1997). Although D-lactate is not a highly toxic compound, D-lactate accumulation in blood (i.e., 3 > mmol/L, Petersen, 2005) might cause health problems due to a poor capacity of metabolizing D-lactate in human (Pohanka 2020; Puwanant et al. 2005). However, more recent studies have shown that D-lactate accumulation may only occur in cases of impaired D-lactate metabolism or a disturbed gastrointestinal function following any clinical symptoms, including short bowel syndrome (Connolly et al. 2005; Ku et al. 2006). In this study, L. reuteri IDCC 3701 was found to predominantly produces L-lactate (20.5 mg/mL, which is equivalent to 78.8%) rather than D-lactate (5.5 mg/mL, 21.2%), respectively.

Single-dose acute oral toxicity study

The in vivo toxicity of L. reuteri IDCC 3701 was investigated by a single-dose acute oral toxicity test. The results of the 14-day feeding to rats revealed that an oral administration of L. reuteri IDCC 3701 using 1.4 × 1010 CFU/g caused no abnormal findings in rats. In addition, there was no difference in gain-weight or loss of feed intake (Table 4), and also there was no change in appearance, behavior, or survival rate during the 14-day observation. At necropsy, no lesions due to the feeding of L. reuteri IDCC 3701 were detected in any organs. In sum, consumption of 0.3 g and 2 g of L. reuteri IDCC 3701 per kg BW of rat was not nontoxic to the tested rats.

Table 4 Body-weight changes of the rats administered L. reuteri IDCC 3701

Conclusion

The safety of L. reuteri IDCC 3701 was demonstrated by genomic and phenotypic analyses and acute toxicity studies. The strain was found to be negative for antibiotic resistance and toxigenicity genes in the genome analysis. The strain did not produce any toxic compounds according to the phenotypic analysis. Furthermore, oral administration of this probiotic strain to rats showed no hazardous phenomena. Therefore, L. reuteri IDCC 3701 isolated from breast milk can be considered safe for human consumption as a probiotic.

Availability of data and materials

All data generated or analyzed during this study are included in this published article, while 16S rDNA sequences of L. reuteri IDCC 3701 are deposited to NCBI Genome Information and available under the accession number, KM453732 (https://www.ncbi.nlm.nih.gov/nuccore/719239383/).

Abbreviations

AMP:

Ampicillin

BA:

Biogenic amine

BHI:

Brain heart infusion

CHL:

Chloramphenicol

CLI:

Clindamycin

ERY:

Erythromycin

GEN:

Gentamicin

HMM:

Hidden Markov model

KAN:

Kanamycin

MIC:

Minimum inhibitory concentration

STR:

Streptomycin

TET:

Tetracycline

VAN:

Vancomycin

VFDB:

Virulence factor data base

References

  1. Alayande KA, Aiyegoro OA, Nengwekhulu TM, Katata-Seru L, Ateba CN (2020) Integrated genome-based probiotic relevance and safety evaluation of Lactobacillus reuteri PNW1. PLoS One 15:e0235873

    CAS  Article  Google Scholar 

  2. Arndt D, Grant J, Marcu A, Sajed T, Pon A, Liang Y et al (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44:W16–W21

    CAS  Article  Google Scholar 

  3. Beneduce L, Romano A, Capozzi V, Lucas P, Barnavon L, Bach B et al (2010) Biogenic amine in wines. Ann Microbiol 60:573–578

    CAS  Article  Google Scholar 

  4. Böttcher MF, Abrahamsson TR, Fredriksson M, Jakobsson T, Björkstén B (2008) Low breast milk TGF-beta2 is induced by Lactobacillus reuteri supplementation and associates with reduced risk of sensitization during infancy. Pediatr Allergy Immunol 19:497–504

    Article  Google Scholar 

  5. Byakika S, Mukisa IM, Byaruhanga YB, Muyanja C (2019) A review of criteria and methods for evaluating the probiotic potential of microorganisms. Food Rev Int 35:427–466

    CAS  Article  Google Scholar 

  6. Campedelli I, Mathur H, Salvetti E, Clarke S, Rea MC, Torriani S et al (2018) Genus-wide assessment of antibiotic resistance in Lactobacillus spp. Appl Environ Microbiol 85:e01738–e01718

    Article  Google Scholar 

  7. Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y et al (2005) VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 33:D325–D328

    CAS  Article  Google Scholar 

  8. Cole C, Fuller R (1987) The effect of dietary fat and yoghurt on colonic bacterial enzymes (β-glucosidase and β-glucuronidase) associated with colon cancer. Food Microbiol 4:77–81

    CAS  Article  Google Scholar 

  9. Connolly E, Abrahamsson T, Björkstén B (2005) Safety of D(-)-lactic acid producing bacteria in the human infant. J Pediatr Gastroenterol Nutr 41:489–492

    Article  Google Scholar 

  10. Danielsen M, Wind A (2003) Susceptibility of Lactobacillus spp. to antimicrobial agents. Int J Food Microbiol 82:1–11

    CAS  Article  Google Scholar 

  11. Doron S, Snydman DR (2015) Risk and safety of probiotics. Clin Infect Dis 60:S129–S134

    Article  Google Scholar 

  12. Duar RM, Frese SA, Lin XB, Fernando SC, Burkey TE, Tasseva G et al (2017) Experimental evaluation of host adaptation of Lactobacillus reuteri to different vertebrate species. Appl Environ Microbiol 83:e00132–e00117

    CAS  Article  Google Scholar 

  13. Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7(10):e1002195

    CAS  Article  Google Scholar 

  14. Gardini F, Özogul Y, Suzzi G, Tabanelli G, Özogul F (2016) Technological factors affecting biogenic amine content in foods: a review. Front Micorbiol 7:1218

    Google Scholar 

  15. Hou C, Zeng X, Yang F, Liu H, Qiao SJ (2015) Study and use of the probiotic Lactobacillus reuteri in pigs: a review. Anim Sci Biotechnol 6:14

    Article  Google Scholar 

  16. Kim DH, Jin YH (2001) Intestinal bacterial β-glucuronidase activity of patients with colon cancer. Arch Pharm Res 24:564–567

    CAS  Article  Google Scholar 

  17. Ku WH, Lau DCY, Huen KF (2006) Probiotics provoked D-lactic acidosis in short bowel syndrome: case report and literature review. HK J Paediatr 11:246–254

    Google Scholar 

  18. Mu Q, Tavella VJ, Luo XM (2018) Role of Lactobacillus reuteri in human health and diseases. Front Microbiol 9:757

    Article  Google Scholar 

  19. Özogul T, Özogul F (2019) Chapter 1: biogenic amines formation, toxicity, regulations in food. In: Saad B, Tofalo R (eds) Biogenic amines in food: Analysis, occurrence and toxicity. Royal Society of Chemistry, London, pp 1–17

    Google Scholar 

  20. Petersen C (2005) D-Lactic acidosis. Nutr Clin Pract 20:634–645

    Article  Google Scholar 

  21. Pohanka M (2020) D-Lactic acid as a metabolite: toxicology, diagnosis, and detection. Biomed Res Int 3419034:9

    Google Scholar 

  22. Priyadarshani WM, Rakshit SK (2011) Screening selected strains of probiotic lactic acid bacteria for their ability to produce biogenic amines (histamine and tyramine). Int J Food Sci Technol 46:2062–2069

    CAS  Article  Google Scholar 

  23. Puwanant M, Mo-Suwan L, Patrapinyokul S (2005) Recurrent D-lactic acidosis in a child with short bowel syndrome. Asia Pac J Clin Nutr 14:195–198

    PubMed  Google Scholar 

  24. Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Girones R et al (2017) Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 6: suitability of taxonomic units notified to EFSA until March 2017. EFSA J 15:e04663

    PubMed  PubMed Central  Google Scholar 

  25. Saarela MH (2019) Safety aspects of next generation probiotics. Curr Opin Sci 30:8–13

    Article  Google Scholar 

  26. Salvetti E, Orrù L, Capozzi V, Martina A, Lamontanara A, Keller D et al (2016) Integrate genome-based assessment of safety for probiotic strains: Bacillus coagulans GBI-30, 6068 as a case study. Appl Microbiol Biotechnol 100:4595–4605

    CAS  Article  Google Scholar 

  27. Soares SC, Geyik H, Ramos RT, De Sá PH, Barbosa EG, Baumbach J et al (2016) GIPSy: genomic island prediction software. J Biotechnol 232:2–11

    CAS  Article  Google Scholar 

  28. Spano G, Russo P, Lonvaud-Funel A, Lucas P, Alexandre H, Grandvalet C et al (2010) Biogenic amines in fermented foods. Eur J Clin Nutr 64:S95–S100

    CAS  Article  Google Scholar 

  29. Stiles ME, Holzapfel WH (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36:1–29

    CAS  Article  Google Scholar 

  30. Valeur N, Engel P, Carbajal N, Connolly E, Ladefoged K (2004) Colonization and immunomodulation by Lactobacillus reuteri ATCC 55730 in the human gastrointestinal tract. Appl Environ Microbiol 70:1176–1181

    CAS  Article  Google Scholar 

  31. Vanderslice P, Copeland WC, Robertus JD (1986) Cloning and nucleotide sequence of wild type and a mutant histidine decarboxylase from Lactobacillus 30a. J Biol Chem 261(32):15186–15191

    CAS  Article  Google Scholar 

  32. Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175

    CAS  Article  Google Scholar 

  33. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O et al (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644

    CAS  Article  Google Scholar 

  34. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P et al (2020) A taxonmonic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 70:2782–2858

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was performed at the Research Center for Ildong Bioscience and at the School of Food Science and Biotechnology in Kyungpook National University.

Funding

This work was supported by Ildong Bioscience and also supported by the National Research Foundation of Korea (NRF) grant funded by Korea government (Ministry of Science and ICT, MSIT; No. 2020R1C1C1005251).

Author information

Affiliations

Authors

Contributions

Bo Som Lee and O-Hyun Ban performed experiments and analyzed the data. Won Yeong Bang, Seung A Choi, and Sangki Oh helped to perform experiments and analyze the data. Minjee Lee and Chanmi Park helped to finalize the manuscript. Jungwoo Yang and Young Hoon Jung designed and wrote the manuscript. Young Hoon Jung supervised the project. Soo Jung Kim aided in interpreting the results and provided critical revision. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jungwoo Yang or Young Hoon Jung.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

All authors read and approved the final manuscript for publication.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1: Figure S1.

Circular genome map and function genes of L. reuteri IDCC 3701. Figure S2. No β-hemolytic activity of L. reuteri IDCC 3701.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, B.S., Ban, OH., Bang, W.Y. et al. Safety assessment of Lactobacillus reuteri IDCC 3701 based on phenotypic and genomic analysis. Ann Microbiol 71, 10 (2021). https://doi.org/10.1186/s13213-021-01622-y

Download citation

Keywords

  • Probiotics
  • Lactic acid bacteria
  • Lactobacillus reuteri
  • Safety evaluation