Skip to main content

Advertisement

Log in

Association of gender to outcome after out-of-hospital cardiac arrest – a report from the International Cardiac Arrest Registry

  • Research Article
  • Published:
Critical Care Aims and scope Submit manuscript

Abstract

Introduction

Previous studies have suggested an effect of gender on outcome after out-of-hospital cardiac arrest (OHCA), but the results are conflicting. We aimed to investigate the association of gender to outcome, coronary angiography (CAG) and adverse events in OHCA survivors treated with mild induced hypothermia (MIH).

Methods

We performed a retrospective analysis of prospectively collected data from the International Cardiac Arrest Registry. Adult patients with a non-traumatic OHCA and treated with MIH were included. Good neurological outcome was defined as a cerebral performance category (CPC) of 1 or 2.

Results

A total of 1,667 patients, 472 women (28%) and 1,195 men (72%), met the inclusion criteria. Men were more likely to receive bystander cardiopulmonary resuscitation, have an initial shockable rhythm and to have a presumed cardiac cause of arrest. At hospital discharge, men had a higher survival rate (52% vs. 38%, P <0.001) and more often a good neurological outcome (43% vs. 32%, P <0.001) in the univariate analysis. When adjusting for baseline characteristics, male gender was associated with improved survival (OR 1.34, 95% CI 1.01 to 1.78) but no longer with neurological outcome (OR 1.24, 95% CI 0.92 to 1.67). Adverse events were common; women more often had hypokalemia, hypomagnesemia and bleeding requiring transfusion, while men had more pneumonia. In a subgroup analysis of patients with a presumed cardiac cause of arrest (n = 1,361), men more often had CAG performed on admission (58% vs. 50%, P = 0.02) but this discrepancy disappeared in an adjusted analysis.

Conclusions

Gender differences exist regarding cause of arrest, adverse events and outcome. Male gender was independently associated with survival but not with neurological outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Abbreviations

CAG:

coronary angiography

CI:

confidence interval

COPD:

chronic obstructive pulmonary disease

CPC:

cerebral performance category

CPR:

cardiopulmonary resuscitation

DNR order:

do-not-resuscitate order

ICU:

intensive care unit

INTCAR:

International Cardiac Arrest Registry

IQR:

interquartile range

MIH:

mild induced hypothermia

OHCA:

out-of-hospital cardiac arrest

OR:

odds ratio

PCI:

percutaneous coronary intervention

ROSC:

return of spontaneous circulation

STEMI:

ST-elevation myocardial infarction

VF:

ventricular fibrillation

VT:

ventricular tachycardia

WLST:

withdrawal of life-sustaining therapy

References

  1. Atwood C, Eisenberg MS, Herlitz J, Rea TD. Incidence of EMS-treated out-of-hospital cardiac arrest in Europe. Resuscitation. 2005;67:75–80.

    Article  PubMed  Google Scholar 

  2. Lindner T, Langørgen J, Sunde K, Larsen A, Kvaløy J, Heltne J, et al. Factors predicting the use of therapeutic hypothermia and survival in unconscious out-of-hospital cardiac arrest patients admitted to the ICU. Crit Care. 2013;17:R147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vaahersalo J, Hiltunen P, Tiainen M, Oksanen T, Kaukonen K-MM, Kurola J, et al. Therapeutic hypothermia after out-of-hospital cardiac arrest in Finnish intensive care units: the FINNRESUSCI study. Intensive Care Med. 2013;39:826–37.

    Article  PubMed  Google Scholar 

  4. Pell JP, Sirel J, Marsden AK, Cobbe SM. Sex differences in outcome following community-based cardiopulmonary arrest. Eur Heart J. 2000;21:239–44.

    Article  CAS  PubMed  Google Scholar 

  5. Bray JE, Stub D, Bernard S, Smith K. Exploring gender differences and the “oestrogen effect” in an Australian out-of-hospital cardiac arrest population. Resuscitation. 2013;84:957–63.

    Article  CAS  PubMed  Google Scholar 

  6. Adielsson A, Hollenberg J, Karlsson T, Lindqvist J, Lundin S, Silfverstolpe J, et al. Increase in survival and bystander CPR in out-of-hospital shockable arrhythmia: bystander CPR and female gender are predictors of improved outcome. Experiences from Sweden in an 18-year perspective. Heart. 2011;97:1391–6.

    Article  PubMed  Google Scholar 

  7. Herlitz J, Engdahl J, Svensson L, Young M, Angquist KA, Holmberg S. Is female sex associated with increased survival after out-of-hospital cardiac arrest? Resuscitation. 2004;60:197–203.

    Article  PubMed  Google Scholar 

  8. Hasan OF, Al Suwaidi J, Omer AA, Ghadban W, Alkilani H, Gehani A, et al. The influence of female gender on cardiac arrest outcomes: a systematic review of the literature. Curr Med Res Opin. 2014;30:2169–78.

    Article  PubMed  Google Scholar 

  9. Wigginton JG, Pepe PE, Bedolla JP, DeTamble LA, Atkins JM. Sex-related differences in the presentation and outcome of out-of-hospital cardiopulmonary arrest: a multiyear, prospective, population-based study. Crit Care Med. 2002;30:S131–6.

    Article  PubMed  Google Scholar 

  10. Kim C, Fahrenbruch CE, Cobb LA, Eisenberg MS. Out-of-hospital cardiac arrest in men and women. Circulation. 2001;104:2699–703.

    Article  CAS  PubMed  Google Scholar 

  11. Perers E, Abrahamsson P, Bang A, Engdahl J, Lindqvist J, Karlson BW, et al. There is a difference in characteristics and outcome between women and men who suffer out of hospital cardiac arrest. Resuscitation. 1999;40:133–40.

    Article  CAS  PubMed  Google Scholar 

  12. Wissenberg M, Hansen CM, Folke F, Lippert FK, Weeke P, Karlsson L, et al. Survival after out-of-hospital cardiac arrest in relation to sex: a nationwide registry-based study. Resuscitation. 2014;85:1212–8.

    Article  PubMed  Google Scholar 

  13. Akahane M, Ogawa T, Koike S, Tanabe S, Horiguchi H, Mizoguchi T, et al. The effects of sex on out-of-hospital cardiac arrest outcomes. Am J Med. 2011;124:325–33.

    Article  PubMed  Google Scholar 

  14. Stub D, Smith K, Bray JE, Bernard S, Duffy SJ, Kaye DM. Hospital characteristics are associated with patient outcomes following out-of-hospital cardiac arrest. Heart. 2011;97:1489–94.

    Article  PubMed  Google Scholar 

  15. Wachelder E, Moulaert V, van Heugten C, Verbunt J, Bekkers S, Wade D. Life after survival: long-term daily functioning and quality of life after an out-of-hospital cardiac arrest. Resuscitation. 2009;80:517–22.

    Article  CAS  PubMed  Google Scholar 

  16. Kitamura T, Iwami T, Nichol G, Nishiuchi T, Hayashi Y, Nishiyama C, et al. Reduction in incidence and fatality of out-of-hospital cardiac arrest in females of the reproductive age. Eur Heart J. 2010;31:1365–72.

    Article  PubMed  Google Scholar 

  17. Engdahl J, Bång A, Karlson B, Lindqvist J, Herlitz J. Characteristics and outcome among patients suffering from out of hospital cardiac arrest of non-cardiac aetiology. Resuscitation. 2003;57:33–41.

    Article  PubMed  Google Scholar 

  18. Kürkciyan I, Meron G, Sterz F, Janata K, Domanovits H, Holzer M, et al. Pulmonary embolism as a cause of cardiac arrest: presentation and outcome. Arch Intern Med. 2000;160:1529–35.

    Article  PubMed  Google Scholar 

  19. Jacobs I, Nadkarni V, Bahr J, Berg RA, Billi JE, Bossaert L, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries. A statement for healthcare professionals from a task force of the international liaison committee on resuscitation (American Heart Association, European Resuscitation Council, Australian Resuscitation Council, New Zealand Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa). Resuscitation. 2004;63:233–49.

    Article  PubMed  Google Scholar 

  20. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101:1644–55.

    Article  CAS  PubMed  Google Scholar 

  21. Jennett B, Bond M. Assessment of outcome after severe brain damage. Lancet. 1975;1:480–4.

    Article  CAS  PubMed  Google Scholar 

  22. Geri G, Mongardon N, Dumas F, Chenevier-Gobeaux C, Varenne O, Jouven X, et al. Diagnosis performance of high sensitivity troponin assay in out-of-hospital cardiac arrest patients. Int J Cardiol. 2013;169:449–54.

    Article  PubMed  Google Scholar 

  23. Spaulding CM, Joly LM, Rosenberg A, Monchi M, Weber SN, Dhainaut JF, et al. Immediate coronary angiography in survivors of out-of-hospital cardiac arrest. N Engl J Med. 1997;336:1629–33.

    Article  CAS  PubMed  Google Scholar 

  24. Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, et al. Targeted temperature management at 33°C versus 36°C after cardiac arrest. N Engl J Med. 2013;369:2197–206.

    Article  CAS  PubMed  Google Scholar 

  25. Johnson MA, Haukoos JS, Larabee TM, Daugherty S, Chan PS, McNally B, et al. Females of childbearing age have a survival benefit after out-of-hospital cardiac arrest. Resuscitation. 2013;84:639–44.

    Article  PubMed  Google Scholar 

  26. Topjian A, Localio A, Berg R, Alessandrini E, Meaney P, Pepe P, et al. Women of child-bearing age have better in-hospital cardiac arrest survival outcomes than do equal-aged men. Crit Care Med. 2010;38:1254–60.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Herlitz J, Ekström L, Wennerblom B, Axelsson A, Bång A, Holmberg S. Effect of bystander initiated cardiopulmonary resuscitation on ventricular fibrillation and survival after witnessed cardiac arrest outside hospital. Br Heart J. 1994;72:408–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wik L, Steen PA, Bircher NG. Quality of bystander cardiopulmonary resuscitation influences outcome after prehospital cardiac arrest. Resuscitation. 1994;28:195–203.

    Article  CAS  PubMed  Google Scholar 

  29. Haglund B, Köster M, Nilsson T, Rosén M. Inequality in access to coronary revascularization in Sweden. Scand Cardiovasc J. 2004;38:334–9.

    Article  PubMed  Google Scholar 

  30. Matsui K, Fukui T, Hira K, Sobashima A, Okamatsu S, Hayashida N, et al. Impact of sex and its interaction with age on the management of and outcome for patients with acute myocardial infarction in 4 Japanese hospitals. Am Heart J. 2002;144:101–7.

    Article  PubMed  Google Scholar 

  31. Gan SC, Beaver SK, Houck PM, MacLehose RF, Lawson HW, Chan L. Treatment of acute myocardial infarction and 30-day mortality among women and men. N Engl J Med. 2000;343:8–15.

    Article  CAS  PubMed  Google Scholar 

  32. Nante N, Messina G, Cecchini M, Bertetto O, Moirano F, McKee M. Sex differences in use of interventional cardiology persist after risk adjustment. J Epidemiol Community Health. 2009;63:203–8.

    Article  CAS  PubMed  Google Scholar 

  33. Hollenbeck RD, McPherson JA, Mooney MR, Unger BT, Patel NC, McMullan PW, et al. Early cardiac catheterization is associated with improved survival in comatose survivors of cardiac arrest without STEMI. Resuscitation. 2014;85:88–95.

    Article  PubMed  Google Scholar 

  34. Bro-Jeppesen J, Kjaergaard J, Wanscher M, Pedersen F, Holmvang L, Lippert FK, et al. Emergency coronary angiography in comatose cardiac arrest patients: do real-life experiences support the guidelines? Eur Heart J Acute Cardiovasc Care. 2012;1:291–301.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Deakin CD, Nolan JP, Soar J, Sunde K, Koster RW, Smith GB, et al. European Resuscitation Council Guidelines for Resuscitation 2010 Section 4. Adult advanced life support. Resuscitation. 2010;81:1305–52.

    Article  PubMed  Google Scholar 

  36. Camuglia AC, Randhawa VK, Lavi S, Walters DL. Cardiac catheterization is associated with superior outcomes for survivors of out of hospital cardiac arrest: Review and meta-analysis. Resuscitation. 2014;85:1533–40.

    Article  PubMed  Google Scholar 

  37. Nielsen N, Sunde K, Hovdenes J, Riker RR, Rubertsson S, Stammet P, et al. Adverse events and their relation to mortality in out-of-hospital cardiac arrest patients treated with therapeutic hypothermia. Crit Care Med. 2011;39:57–64.

    Article  PubMed  Google Scholar 

  38. Kim MJ, Shin SD, McClellan WM, McNally B, Ro YS, Song KJ, et al. Neurological prognostication by gender in out-of-hospital cardiac arrest patients receiving hypothermia treatment. Resuscitation. 2014;85:1732–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Funding: Swedish Research Council, Region Skåne (Sweden), National Health Service (Sweden), Thure Carlsson Foundation, Hans-Gabriel and Alice Trolle-Wachtmeister Foundation for Medical Research. Grant support from the European Union Interreg IV A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Friberg.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

VK, JD and HF contributed to study design, data collection, data analysis and manuscript preparation. NN, KBK, DBS, RRR, MRM, BTU, PS, ES, KS and SR contributed to data collection and manuscript preparation. All authors read and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karlsson, V., Dankiewicz, J., Nielsen, N. et al. Association of gender to outcome after out-of-hospital cardiac arrest – a report from the International Cardiac Arrest Registry. Crit Care 19, 182 (2015). https://doi.org/10.1186/s13054-015-0904-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13054-015-0904-y

Keywords

Navigation