Background

Fibromuscular dysplasia (FMD) is a nonatheromatous, noninflammatory arterial disorder of unknown etiology resulting in vessel stenosis and/or aneurysm formation [1]. The renal and cephalocervical arterial beds are classically involved. Involvement of visceral arteries is rare. Mesenteric panniculitis (MP) is an inflammatory process of mesenteric fat, also considered to be of unknown etiology [2]. The small intestinal mesentery is by far the most common site; the colorectal mesentery is less commonly involved [2]. This case describes massive colorectal MP due to FMD of the inferior mesenteric artery (IMA), representing a unique association of two rare entities (Additional file 1).

Case presentation

A 52-year old man came to the emergency department after ten days of steadily worsening crampy pain in the left flank and iliac fossa. His medical history was unremarkable. He had stopped smoking ten years previously (15 pack-years). The temperature was 38.8 C. Physical examination of the lower abdomen elicited some guarding, but the abdomen was otherwise supple with no palpable mass. The leucocyte count was normal. He was admitted to hospital.

An abdominal CT scan showed features compatible with colitis, probably ischemic, extending from the splenic angle to the rectum. The bowel wall was thickened with “infiltration” of the surrounding fat. A 3 cm left renal mass was also noted. Although colonoscopy showed colitis of irregular distribution, perhaps infectious, a biopsy specimen revealed normal colonic mucosa. The patient was discharged with a prescription for an antibiotic.

Four days later he returned to the emergency department with pain similar to that at his first admission. He was admitted to hospital. A CT scan was performed (Fig. 1) which showed a markedly thickened mesentery and a thickened, non-enhancing left colonic wall. The inferior mesenteric artery was irregular, tortuous and stenosed; there was no intravascular thrombosis. Based on these findings, vasculitis was initially considered. Colonoscopy showed marked edema of the mucosa. A biopsy specimen showed ischemic changes.

Fig. 1
figure 1

Computerized tomography images in arterial phase acquisition: a) Axial (1 mm slice thickness) showing fat stranding (black arrows) and thickened sigmoid wall (short thick arrows). b Coronal reconstruction (maximal intensity projection [MIP] slice thickness 7 mm) showing thickened recto-sigmoid wall (short thick arrow), and abnormal irregular and dilated distal vessels arising from the inferior mesenteric artery (thin arrow). c Sagittal reconstruction (MIP slice thickness 5 mm) showing multiple tortuous vessels (thin arrows) and hyperemic thickened mesocolon (arrow heads)

Three weeks later a diagnostic laparoscopy was performed which found ascites and multiple whitish epiploic appendices, one of which was biopsied with a subsequent microscopic diagnosis of fat necrosis. A loop colostomy was performed.

Six weeks later symptoms of large bowel obstruction developed; a left hemicolectomy with transverse colostomy was therefore performed. During the same intervention a left partial nephrectomy was carried out. The rectal stump was left open with a drain.

Pathologic findings

The renal mass showed microscopic features characteristic of an oncocytoma.

Macroscopic examination of the recto-sigmoid resection specimen (Fig. 2) showed diffuse hemorrhagic necrosis of the mucosa and marked bowel wall thickening with massive mesenteric necrosis. Necrotic fat encased the whole length of the resected bowel.

Fig. 2
figure 2

Macroscopy of the resected recto-sigmoid colon: a) Longitudinal view. The necrotic mucosa is covered by an extensive inflammatory pseudo-membrane. The mesentery shows diffuse fat necrosis (panniculitis). b and c Cross sectional views. The colonic wall is thickened and edematous. There is extensive mesenteric fat necrosis. Normal fat is seen at right

Microscopic examination (Fig. 3) confirmed marked ischemia and ulceration of the colonic mucosa. The mesentery showed findings typical of fat necrosis. Numerous arteries and arterioles within the necrotic fat were obstructed to varying degrees, often completely, by fibrosis of the intima; the media of these vessels was normal. Atheromata, thrombosis, and inflammation were absent. The changes were considered diagnostic of fibromuscular dysplasia, intimal-type.

Fig. 3
figure 3

Histology of the resected recto-sigmoid colon: a) Scanning power view of the ulcerated mucosa with adjacent normal colonic epithelium. b and c Scanning power views of the extensively necrotic mesentery. Viable (b) and ulcerated (c) colonic mucosa are seen respectively (arrows). d Medium power view of colonic epithelium showing acute ischemia characterized by epithelial loss with fibrosis and multiple micro-thromboemboli within the lamina propria. e Medium power view of necrotic mesentery with numerous foamy macrophages. Fibrosis is absent. A medium-size vessel shows nearly complete fibrous obliteration of the lumens. f, g, h, i, j High power views of medium size mesenteric arteries with fibrous intimal proliferation leading to near-complete luminal occlusion: hemotoxylin-phloxin-saffrin (f, g) and Verhoff Von Geason (h, i, j), the latter highlighting arterial internal elastic lamina

The postoperative course was uneventful and the patient was discharged home. Ten months later, he is asymptomatic and he is due to have his colostomy reversed.

Conclusions

Fibromuscular dysplasia (FMD) involving visceral arteries in adults is rare (or rarely reported), with only 75 well-documented cases published since 1963 (Table 1). This is the first documented case of mesenteric panniculitis (MP) of the rectosigmoid colon due to visceral artery FMD. Two features are notable: limitation of involvement to the distribution of the inferior mesenteric artery, and the “massive” extent of the panniculitis.

Table 1 Reported cases of adult (greater to/equal 18 y of age) visceral artery fibromuscular dysplasia

Mesenteric panniculitis (MP) is a rare inflammatory disorder leading to “tumorlike” enlargement of the mesentery, the vast majority of cases involving the small bowel [2, 3]. It is characterized by variable degrees of fat necrosis, chronic inflammation and fibrosis. This histologic variability has resulted in other terms which reflect the dominant morphologic finding, including sclerosing mesenteritis and mesenteric lipodystrophy [2]. Numerous clinical associations have been noted and there are many theories regarding etiology [3]. No unifying pathophysiologic mechanism has been elucidated, likely because it is the result of a number of disease processes.

FMD is defined as a “nonatheroscleotic, noninflammatory vascular disease that may result in arterial stenosis, occlusion, aneurysm, or dissection [1]”. The renal and cervicocranial (CC) vascular beds are classically involved [1]. A landmark consensus histologic classification of renal artery FMD was published in 1971, emphasizing the vessel layer involved [4]: 1) intimal fibroplasia (1-2 % of cases), 2) medial, of which there are four subtypes: medial dysplasia with mural aneurysm (60-70 %), medial hyperplasia (5-15 %), perimedial fibroplasia (15-25 %), medial dissection (5-10 %), and 3) periarterial fibroplasia (less than 1 %). Subsequent experience has shown that intimal FMD is more common than was appreciated in 1971, and that there are reliable angiographic correlates to these histologic subtypes [1]. It is noteworthy that the opportunity for microscopic examination of involved vessels in suspected FMD is now exceptional: in a recent review of 447 patients, tissue for pathologic analysis was available in only 3.3 % of cases (from all vascular beds). The diagnosis is now established in essentially all cases by angiographic and noninvasive imaging [1].

The angiographic appearance of medial FMD is classically described as “string-of-beads” (typical FMD) [5] and is secondary to medial thickening causing luminal stenosis, alternating with zones of mural thinning and dilatation (aneurysms), the latter associated with loss of the internal elastic lamina [1, 4, 5]. In certain vascular beds, and, of note, the mesenteric vessels, the string-of-beads change is less frequent. Rather, the angiographic appearance is one of tubular constriction (atypical FMD) [1, 5], which correlates with intimal involvement, such as was present here. Thus, absence of the string-of-beads sign should not reflexively rule out a diagnosis of FMD.

A 2014 consensus document [6] recommends, when either renal or cervicocranial FMD is discovered, screening of the “other” vascular bed provided identification of any new lesion will modify the patient’s management. The authors extend this recommendation to screening of “less often involved vascular beds” only when there are suggestive symptoms or a suggestive medical history. Angiographic imaging had revealed no involvement of the renal arteries in our patient. In light of the diagnosis of FMD of a major visceral artery, angiographic study of the CC vessels was subsequently performed which revealed no abnormality. In retrospect, this might have been expected as our summary of the reported cases of FMD of visceral arterial beds (Table 2) shows that only 12 % of males with visceral FMD had CC involvement.

Table 2 Summary of reported cases of visceral fibromuscular dysplasia

Table 2 also highlights that, although the earliest reports show an overwhelming majority of cases occurring in females, later cases document many more males with visceral FMD, such that men now represent one third of cases. There is also a gender difference regarding associated CC and renal artery involvement: concomitant CC and/or renal artery disease was present in 80 % of females, whereas these vessels were involved individually or together in 32 % of men. Involvement of the IMA is highly unusual; indeed, we describe the first case in which disease is limited to this artery.

Of note, regarding the reported cases of visceral FMD, we must mention an extraordinary publication from 2005 [7] which tallies 30 cases of FMD of the SMA from one Parisian clinic alone, which would thus account for more than one third of all the reported cases retrieved through the PubMed database. As this uniquely vast experience does not sufficiently detail individual patients and includes presentations not described elsewhere (e.g. SMA dissection in eight patients), we have chosen to exclude it from the table.

In conclusion, we describe FMD as the etiology of a case of massive colorectal MP. FMD of visceral arteries may have “atypical” clinical and radiologic features, and, although a rare entity, should be considered when MP is diagnosed.

Consent

Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.