Hofreiter M, Paijmans JLA, Goodchild H, Speller CF, Barlow A, Fortes GG, et al. The future of ancient DNA: technical advances and conceptual shifts. BioEssays. 2015;37:284–93.
Article
Google Scholar
Delsuc F, Gibb GC, Kuch M, Billet G, Hautier L, Southon J, et al. The phylogenetic affinities of the extinct glyptodonts. Curr Biol. 2016;26:R155–6.
CAS
Article
Google Scholar
Paijmans JLA, Barnett R, Gilbert MTP, Zepeda-Mendoza ML, Reumer JWF, de VJ, et al. Evolutionary history of saber-toothed cats based on ancient Mitogenomics. Curr Biol. 2017;27:3330–3336.e5.
CAS
Article
Google Scholar
Paijmans JLA, Gilbert MTP, Hofreiter M. mitogenomic analyses from ancient DNA. Mol Phylogenet Evol. 2013;69:404–16.
CAS
Article
Google Scholar
Westbury M, Baleka S, Barlow A, Hartmann S, JLA P, Kramarz A, et al. A mitogenomic timetree for Darwin’s enigmatic south American mammal Macrauchenia patachonica. Nat Commun. 2017;8 ncomms15951.
CAS
Article
Google Scholar
Diedrich CG. Late Pleistocene leopards across Europe – northernmost European German population, highest elevated records in the Swiss Alps, complete skeletons in the Bosnia Herzegowina Dinarids and comparison to the ice age cave art. Quat Sci Rev. 2013;76:167–93.
Article
Google Scholar
Jacobson AP, Gerngross P, Lemeris Jr. JR, Schoonover RF, Anco C, Breitenmoser-Würsten C, et al. Leopard (Panthera pardus) status, distribution, and the research efforts across its range. Peer J 2016;4:e1974.
Article
Google Scholar
Sommer RS, Benecke N. Late Pleistocene and Holocene development of the felid fauna (Felidae) of Europe: a review. J Zool. 2006;269:7–19.
Article
Google Scholar
Nowell K, Jackson P. Wild cats: status survey and conservation action plan. IUCN Gland; 1996.
Google Scholar
Packer C, Kosmala M, Cooley HS, Brink H, Pintea L, Garshelis D, et al. Sport hunting, predator control and conservation of large carnivores. PLoS One. 2009;4:e5941.
Article
Google Scholar
Rostro-García S, Kamler JF, Ash E, Clements GR, Gibson L, Lynam AJ, et al. Endangered leopards: range collapse of the Indochinese leopard (Panthera pardus delacouri) in Southeast Asia. Biol Conserv. 2016;201:293–300.
Article
Google Scholar
Swanepoel LH, Somers MJ, Van Hoven W, Schiess-Meier M, Owen G, Snyman A, et al. Survival rates and causes of mortality of leopards Panthera pardus in southern Africa; 2015. https://doi.org/10.1017/S0030605313001282.
Book
Google Scholar
Ebrahimi A, Farashi A, Rashki A. Habitat suitability of Persian leopard Panthera pardus saxicolor in Iran in future. Environ Earth Sci. 2017;76:697.
Article
Google Scholar
Farashi A, Shariati M. Evaluation of the role of the national parks for Persian leopard Panthera pardus saxicolor habitat conservation (case study: Tandooreh National Park, Iran). Mammal Res. 2018:1–8.
Kittle AM, Watson AC, Cushman SA, Macdonald DW. Forest cover and level of protection influence the island-wide distribution of an apex carnivore and umbrella species, the Sri Lankan leopard Panthera pardus kotiya. Biodivers Conserv. 2018;27:235–63.
Article
Google Scholar
Sandom CJ, Faurby S, Svenning J-C, Burnham D, Dickman A, Hinks AE, et al. Learning from the past to prepare for the future: felids face continued threat from declining prey. Ecography. 2018;41:140–52.
Article
Google Scholar
Wolf C, Ripple WJ. Prey depletion as a threat to the world’s large carnivores. R Soc Open Sci. 2016;3:160252.
Article
Google Scholar
Stein AB, Athreya V, Gerngross P, Balme G, Henschel P, Karanth U, et al. Panthera pardus (errata version published in 2016). The IUCN Red List of Threatened Species 2016. 2016;e.T15954A102421779.
Uphyrkina O, Johnson WE, Quigley H, Miquelle D, Marker L, Bush M, et al. Phylogenetics, genome diversity and origin of modern leopard, Panthera pardus. Mol Ecol. 2001;10:2617–33.
CAS
Article
Google Scholar
Werdelin L, Lewis ME. Plio-Pleistocene Carnivora of eastern Africa: species richness and turnover patterns. Zool J Linnean Soc 2005;144:121–44.
Article
Google Scholar
Hemmer H. Fossil history of living Felidae. Carnivore. 1979;2:58–61.
Google Scholar
Wilting A, Patel R, Pfestorf H, Kern C, Sultan K, Ario A, et al. Evolutionary history and conservation significance of the Javan leopard Panthera pardus melas. J Zool. 2016;:n/a-n/a.
Anco C, Kolokotronis S-O, Henschel P, Cunningham SW, Amato G, Hekkala E. Historical mitochondrial diversity in African leopards (Panthera pardus) revealed by archival museum specimens. Mitochondrial DNA Part A. 2017;0:1–19.
Google Scholar
Farhadinia MS, Farahmand H, Gavashelishvili A, Kaboli M, Karami M, Khalili B, et al. Molecular and craniological analysis of leopard, Panthera pardus (Carnivora: Felidae) in Iran: support for a monophyletic clade in Western Asia. Biol J Linn Soc. 2015;114:721–36.
Article
Google Scholar
Miththapala S, Seidensticker J, O’Brien SJ. Phylogeographic subspecies recognition in leopards (Panthera pardus): molecular genetic variation. Conserv Biol. 1996;10:1115–32.
Article
Google Scholar
Ropiquet A, Knight AT, Born C, Martins Q, Balme G, Kirkendall L, et al. Implications of spatial genetic patterns for conserving African leopards. C R Biol. 2015;338:728–37.
Article
Google Scholar
Rozhnov VV, Lukarevskiy VS, Sorokin PA. Application of molecular genetic characteristics for reintroduction of the leopard (Panthera pardus L., 1758) in the Caucasus. Dokl Biol Sci. 2011;437:97–102.
CAS
Article
Google Scholar
Spong G, Johansson M, Björklund M. High genetic variation in leopards indicates large and long-term stable effective population size. Mol Ecol. 2000;9:1773–82.
CAS
Article
Google Scholar
Uphyrkina O, Miquelle D, Quigley H, Driscoll C, O’Brien SJ. Conservation genetics of the far eastern leopard (Panthera pardus orientalis). J Hered. 2002;93:303–11.
CAS
Article
Google Scholar
Turner A, Antón M. The big cats and their fossil relatives: an illustrated guide to their evolution and natural history. In: Columbia University press; 1997.
Google Scholar
Werdelin L, Dehghani R. Carnivora. In: Paleontology and geology of Laetoli: human evolution in context. Dordrecht: Springer; 2011. p. 189–232. https://doi.org/10.1007/978-90-481-9962-4_8.
Chapter
Google Scholar
Hemmer H, Kahlke R-D, Vekua AK. The Old World puma - Puma pardoides (Owen, 1846) (Carnivora: Felidae) - in the lower Villafranchian (upper Pliocene) of Kvabebi (East Georgia, Transcaucasia) and its evolutionary and biogeographical significance. Neues Jahrb Geol Palaontol Abh. 2004;233:197–231.
Google Scholar
Werdelin L, Yamaguchi N, Johnson WE, O’Brien SJ. Phylogeny and evolution of cats (Felidae). Biol Conserv Wild Felids Oxf. 2010:59–82.
Harrison T. Paleontology and geology of Laetoli: human evolution in context: volume 2: fossil hominins and the associated Fauna. Springer Science & Business Media; 2011.
Google Scholar
Baryshnikov GF. Late Pleistocene Felidae remains (Mammalia, Carnivora) from Geographical Society Cave in the Russian Far East. Proc Zool Inst RAS. 2016;320:84–120.
Google Scholar
Meijaard E. Biogeographic history of the Javan leopard Panthera pardus based on a Craniometric analysis. J Mammal. 2004;85:302–10.
Article
Google Scholar
Baryshnikov GF. Pleistocene Felidae (Mammalia, Carnivora) from the Kudaro paleolithic cave sites in the Caucasus. In: Proceedings of the Zoological Institute Russian Academy of Science; 2011. p. 19.
Google Scholar
Kurtén B. Pleistocene mammals of Europe. Transaction Publishers; 1968.
Google Scholar
Marciszak A, Krajcarz MT, Krajcarz M, Stefaniak K. The first record of leopard Panthera pardus Linnaeus, 1758 from the Pleistocene of Poland. Acta Zool Cracoviensia - Ser Vertebr. 2011;54:39–46.
Article
Google Scholar
Ghezzo E, Rook L. The remarkable Panthera pardus (Felidae, Mammalia) record from Equi (Massa, Italy): taphonomy, morphology, and paleoecology. Quat Sci Rev. 2015;110(Supplement C):131–51.
Article
Google Scholar
Nagel D. Panthera pardus vraonensis n. ssp., a new leopard from the Pleistocene of Vraona/Greece. (With 5 figures and 4 tables). Neues Jahrb Für Geol Palaontologie Monatshefte. 1999:129–50.
Sauqué V, Rabal-Garcés R, Cuenca-Bescós G. Carnivores from Los Rincones, a leopard den in the highest mountain of the Iberian range (Moncayo, Zaragoza, Spain). Hist Biol. 2016;28:479–506.
Article
Google Scholar
Sabol M, Persico D, Troco E. First fossil record of leopard-like felid (Panthera cf. pardus) from alluvial deposits of the Po River in northern Italy. Quat Int. 2017. https://doi.org/10.1016/j.quaint.2016.12.036.
Article
Google Scholar
Baca M, Popović D, Stefaniak K, Marciszak A, Urbanowski M, Nadachowski A, et al. Retreat and extinction of the Late Pleistocene cave bear (Ursus spelaeus sensu lato). Naturwissenschaften. 2016;103. https://doi.org/10.1007/s00114-016-1414-8.
Pacher M, Stuart AJ. Extinction chronology and palaeobiology of the cave bear (Ursus spelaeus). Boreas. 2009;38:189–206.
Article
Google Scholar
Stuart AJ, Lister AM. Patterns of Late Quaternary megafaunal extinctions in Europe and northern Asia. Cour-Forschungsinstitut Senckenberg. 2007;259:287.
Google Scholar
Alberti F, Gonzalez J, Paijmans JLA, Basler N, Preick M, Henneberger K, et al. Optimised DNA sampling of ancient bones using computed tomography (CT) scans. Mol Ecol Resour. 2018. https://doi.org/10.1111/1755-0998.12911.
Woodruff DS, Turner LM. The Indochinese–Sundaic zoogeographic transition: a description and analysis of terrestrial mammal species distributions. J Biogeogr. 2009;36:803–21.
Article
Google Scholar
Wilting A, Courtiol A, Christiansen P, Niedballa J, Scharf AK, Orlando L, et al. Planning tiger recovery: understanding intraspecific variation for effective conservation. Sci Adv. 2015;1:e1400175.
Article
Google Scholar
Patel RP, Wutke S, Lenz D, Mukherjee S, Ramakrishnan U, Veron G, et al. Genetic structure and phylogeography of the leopard cat (Prionailurus bengalensis) inferred from mitochondrial genomes. J Hered. 2017;108:349–60.
Article
Google Scholar
Hughes JB, Round PD, Woodruff DS. The Indochinese–Sundaic faunal transition at the Isthmus of Kra: an analysis of resident forest bird species distributions. Journal of Biogeography. 2003;30:569–80.
Article
Google Scholar
Hughes AC, Satasook C, Bates PJJ, Bumrungsri S, Jones G. Explaining the causes of the zoogeographic transition around the Isthmus of Kra: using bats as a case study. Journal of Biogeography. 2011;38:2362–72.
Article
Google Scholar
Inger RF, Voris HK. The biogeographical relations of the frogs and snakes of Sundaland. Journal of Biogeography. 2001;28:863–91.
Article
Google Scholar
Lohman DJ, de Bruyn M, Page T, von Rintelen K, Hall R, Ng PKL, et al. Biogeography of the Indo-Australian archipelago. Annu Rev Ecol Evol Syst. 2011;42:205–26.
Article
Google Scholar
Voris HK. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J Biogeogr. 2000;27:1153–67.
Article
Google Scholar
Hall KR. A history of early Southeast Asia: maritime trade and societal development, 100–1500. Lanham, Md: Rowman & Littlefield; 2011.
Google Scholar
Williams MAJ, Ambrose SH, van der Kaars S, Ruehlemann C, Chattopadhyaya U, Pal J, et al. Environmental impact of the 73ka Toba super-eruption in South Asia. Palaeogeogr Palaeoclimatol Palaeoecol. 2009;284:295–314.
Article
Google Scholar
Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, et al. A draft sequence of the Neandertal genome. Science. 2010;328:710–22.
CAS
Article
Google Scholar
Meyer M, Kircher M, Gansauge M-T, Li H, Racimo F, Mallick S, et al. A high-coverage genome sequence from an archaic Denisovan individual. Science. 2012;338:222–6.
CAS
Article
Google Scholar
Barlow A, Cahill JA, Hartmann S, Theunert C, Xenikoudakis G, Fortes GG, et al. Partial genomic survival of cave bears in living brown bears. Nat Ecol Evol. 2018. https://doi.org/10.1038/s41559-018-0654-8.
Article
Google Scholar
Dabney J, Knapp M, Glocke I, Gansauge M-T, Weihmann A, Nickel B, et al. Complete mitochondrial genome sequence of a middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc Natl Acad Sci. 2013;110:15758–63.
CAS
Article
Google Scholar
Fortes GG, Paijmans JLA. In: Kroneis T, editor. Analysis of whole mitogenomes from ancient samples. USA: Whole genome amplification. Humana Press; 2016.
Google Scholar
Meyer M, Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb Protoc. 2010;2010. https://doi.org/10.1101/pdb.prot5448.
Article
Google Scholar
Gansauge M-T, Meyer M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat Protoc. 2013;8:737–48.
Article
Google Scholar
Slon V, Glocke I, Barkai R, Gopher A, Hershkovitz I, Meyer M. Mammalian mitochondrial capture, a tool for rapid screening of DNA preservation in faunal and undiagnostic remains, and its application to Middle Pleistocene specimens from Qesem cave (Israel). Quat Int. 2015. https://doi.org/10.1016/j.quaint.2015.03.039.
Article
Google Scholar
Fu Q, Meyer M, Gao X, Stenzel U, Burbano HA, Kelso J, et al. DNA analysis of an early modern human from Tianyuan cave, China. Proc Natl Acad Sci. 2013;110:2223–7.
CAS
Article
Google Scholar
Paijmans JLA, Baleka S, Henneberger K, Taron UH, Trinks A, Westbury MV, et al. Sequencing single-stranded libraries on the Illumina NextSeq 500 platform. In: ArXiv171111004 Q-Bio; 2017. http://arxiv.org/abs/1711.11004. Accessed 5 Dec 2017.
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25:1754–60.
CAS
Article
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.
Article
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–8.
CAS
Article
Google Scholar
Lanfear R, Calcott B, Ho SYW, Guindon S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol. 2012;29:1695–701.
CAS
Article
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014; btu033.
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Gateway Computing Environments Workshop (GCE) 2010; 2010. p. 1–8.
Google Scholar
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:1969–73.
CAS
Article
Google Scholar
Leigh JW, Bryant D. Popart: full-feature software for haplotype network construction. Methods Ecol Evol. 2015;6:1110–6.
Article
Google Scholar
Joger U, Rosendahl W. The Rübeland Caves (Harz Mountains) - Historical Excavations and Modern Analyses. Braunschweiger Naturkundliche Schriften. 2012;11:55–68.
Google Scholar
Lei W, XiaoBing W, Zhu L, and Jiang Z. Mitogenomic Analysis of the Genus Panthera. Science China Life Sciences. 2011;54(10):917–30.
Article
Google Scholar
Dou H, Feng L, Xiao W, Wang T. The Complete Mitochondrial Genome of the North Chinese Leopard (Panthera Pardus Japonensis)”. Mitochondrial DNA 2016,27(2):1167–68. https://doi.org/10.3109/19401736.2014.936421.
CAS
Article
Google Scholar
Gang L, Davis BW, Eizirik E, Murphy WJ. Phylogenomic Evidence for Ancient Hybridization in the Genomes of Living Cats (Felidae). Genome Research 2016,26(1):1–11. https://doi.org/10.1101/gr.186668.114.
Article
Google Scholar