Darwin C. The formation of vegetable mould, through the action of worms, with observations on their habits. London: J. Murray; 1892.
Google Scholar
Cunha L, Brown GG, Stanton DWG, Da Silva E, Hansel FA, Jorge G, et al. Soil animals and pedogenesis: the role of earthworms in anthropogenic soils. Soil Sci. 2016;181:110–25.
CAS
Article
Google Scholar
Hendrix PF, Callaham MA, Drake JM, Huang C-Y, James SW, Snyder BA, et al. Pandora’s box contained bait: the global problem of introduced earthworms. Annu Rev Ecol Evol Syst. 2008;39:593–613.
Article
Google Scholar
Blakemore, RJ American earthworms (Oligochaeta) from North of Rio Grande—a species checklist. A series of searchable texts on earthworm biodiversity, ecology and systematics from various regions of the world, 2nd edn. COE Soil Ecology Research Group, Yokohama National University, Japan. 2006;1-16.
Bohlen PJ, Scheu S, Hale CM, McLean MA, Migge S, Groffman PM, et al. Non-native invasive earthworms as agents of change in northern temperate forests. Front Ecol Environ. 2004;2:427–35. Eco Soc America
Article
Google Scholar
James SW. Planetary processes and their interactions with earthworm distributions and ecology. Earthworm Ecol. 2nd ed. Boca Rat: CRC Press; 2004. p. 53–62.
Google Scholar
Michaelsen W. Das Tierreich Vol, 10, Oligochaeta. Friedländer Sohn, Berlin. Pp. XXIX. 1900;575.
Michaelsen W. Die Oligochäten Surinames. Mit Erörterung der verwandtschaftlichen und Geogr. Beziehungen der Octochätinen.-Tijdschr. Nederl. Dierk Ver 1933;3:112–30.
Wegener A. The origin of continents and oceans (Translated from the 4th revision of the German edition by John Biram). New York: Dover Publications; 1929.
Google Scholar
Erséus C. Phylogeny of oligochaetous Clitellata. Hydrobiologia. 2005;535–536:357–72.
Google Scholar
Jamieson BGM. On the phylogeny and higher classification of the Oligochaeta. Cladistics. 1988;4:367–401.
Article
Google Scholar
Jamieson BGM, Tillier S, Tillier A, Justine J-L, Ling E, James S, et al. Phylogeny of the Megascolecidae and Crassiclitellata (Annelida, Oligochaeta): combined versus partitioned analysis using nuclear (28S) and mitochondrial (12S, 16S) rDNA. Zoosystema. 2002;24:707–34.
James SW, Davidson SK. Molecular phylogeny of earthworms (Annelida: Crassiclitellata) based on 28S, 18S and 16S gene sequences. Invertebr Syst. 2012;26:213. CSIRO PUBLISHING.
Article
Google Scholar
Brinkhurst RO. The position of the Haplotaxidae in the evolution of oligochaete annelids. Hydrobiologia. 1984;115:25–36. Springer
Article
Google Scholar
Brinkhurst RO. A taxonomic analysis of the Haplotaxidae (Annelida, Oligochaeta). Can J Zool. 1988;66:2243–52. NRC Research Press
Article
Google Scholar
Martínez-Ansemil E, Creuzé Des Châtelliers M, Martin P, Sambugar B. The Parvidrilidae - a diversified groundwater family: description of six new species from southern Europe, and clues for its phylogenetic position within Clitellata (Annelida). Zool J Linnean Soc. 2012;166:530–58.
Article
Google Scholar
Brinkhurst RO. Retrospect and prospect: reflections on forty years of study of aquatic oligochaetes. Hydrobiologia. 1999;406:9–19. Kluwer Academic Publishers
Article
Google Scholar
Siddall ME, Apakupakul K, Burreson EM, Coates KA, Erséus C, Gelder SR, et al. Validating Livanow: molecular data agree that leeches, branchiobdellidans, and Acanthobdella peledina form a monophyletic group of oligochaetes. Mol Phylogenet Evol. 2001;21:346–51.
CAS
Article
PubMed
Google Scholar
Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, Abrego D, Colbourne JK, et al. Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. BMC Genomics. 2009;10:219. BioMed Central
Article
PubMed
PubMed Central
Google Scholar
Crusoe MR, Alameldin HF, Awad S, Boucher E, Caldwell A, Cartwright R, et al. The khmer software package: enabling efficient nucleotide sequence analysis. F1000Res. 2015;4:900.
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–52.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ebersberger I, Strauss S, von Haeseler A. HaMStR: Profile hidden markov model based search for orthologs in ESTs. BMC Evol Biol. 2009;9:157.
Article
PubMed
PubMed Central
Google Scholar
Katoh K, Kuma K, Toh H, Miyata T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005;33:511–8.
CAS
Article
PubMed
PubMed Central
Google Scholar
Struck TH. The impact of paralogy on phylogenomic studies - a case study on annelid relationships. PLoS One. 2013;8:–e62892. Public Library of Science
Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490. Public Library of Science
Article
PubMed
PubMed Central
Google Scholar
Kocot KM, Citarella MR, Moroz LL, Halanych KM. PhyloTreePruner: a phylogenetic tree-based approach for selection of orthologous sequences for phylogenomics. Evol Bioinformatics Online. 2013;9:429–35.
CAS
Article
Google Scholar
Kück P, Meusemann K. FASconCAT: convenient handling of data matrices. Mol Phylogenet Evol. 2010;56:1115–8.
Article
PubMed
Google Scholar
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.
CAS
Article
PubMed
Google Scholar
Tan G, Muffato M, Ledergerber C, Herrero J, Goldman N, Gil M, et al. Current methods for automated filtering of multiple sequence alignments frequently worsen single-gene phylogenetic inference. Syst Biol. 2015;64:778–91. Oxford University Press
Article
PubMed
PubMed Central
Google Scholar
Pisani D, Pett W, Dohrmann M, Feuda R, Rota-Stabelli O, Philippe H, et al. Genomic data do not support comb jellies as the sister group to all other animals. Proc Natl Acad Sci. 2015;112:15402–7.
CAS
Article
PubMed
PubMed Central
Google Scholar
Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3. Oxford University Press
CAS
Article
PubMed
PubMed Central
Google Scholar
Schmidt HA, Strimmer K, Vingron M, Von Haeseler A. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing Bioinformatics; 2002. p. 502–4.
Google Scholar
Felsenstein J. Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 1978;27:401-10.
Hendy MD, Penny D. A framework for the quantitative study of evolutionary trees. Syst Zool. 1989;38:297–309.
Foster PG, Hickey DA. Compositional bias may affect both DNA-based and protein-based phylogenetic reconstructions. J Mol Evol. 1999;48:284–90.
Saccone C, Lanave C, Pesole G, Preparata G. Influence of base composition on quantitative estimates of gene evolution. Methods Enzymol. 1990;183:570–83.
Struck TH. TreSpEx—Detection of misleading signal in phylogenetic reconstructions based on tree information. Evol Bioinforma. 2014;10:51.
CAS
Article
Google Scholar
Kück P, Struck TH. BaCoCa--a heuristic software tool for the parallel assessment of sequence biases in hundreds of gene and taxon partitions. Mol Phylogenet Evol. 2014;70:94–8.
Article
PubMed
Google Scholar
Zhong M, Hansen B, Nesnidal M, Golombek A, Halanych KM, Struck TH. Detecting the symplesiomorphy trap: a multigene phylogenetic analysis of terebelliform annelids. BMC Evol Biol. 2011;11:369.
Article
PubMed
PubMed Central
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
CAS
Article
PubMed
PubMed Central
Google Scholar
Miller M, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Gatew Comput. Environ. Work. (GCE), 2010; 2010. p. 1–8. IEEE.
Google Scholar
Grunewald S, Spillner A, Bastkowski S, Bogershausen A, Moulton V. SuperQ: computing supernetworks from quartets. IEEE/ACM Trans Comput Biol Bioinforma. 2013;10:151–60.
Article
Google Scholar
Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–67. Oxford University Press
CAS
Article
PubMed
Google Scholar
Lartillot N, Rodrigue N, Stubbs D, Richer J. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol. 2013;62:611–5. Oxford University Press
CAS
Article
PubMed
Google Scholar
Rambaut A, Drummond AJ. Tracer 2009. Available from: http://tree.bio.ed.ac.uk/software/tracer/.
Shimodaira H, Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol. 1999;16:1114–6.
Shimodaira H. An approximately unbiased test of phylogenetic tree selection. Syst Biol. 2002;51:492–508.
Article
PubMed
Google Scholar
Goldman N, Anderson JP, Rodrigo AG. Likelihood-based tests of topologies in phylogenetics. Syst Biol. 2000;49:652–70.
CAS
Article
PubMed
Google Scholar
Swofford DL, Olsen GJ, Waddell PJ, Hillis DM. Phylogenetic inference. In: Hillis DM, Moritz C and Mable BK, editors. Molecular Systematics, 2nd ed. Sunderland: Sinauer Associates; 1996. p. 407–514.
Bergsten J, Nilsson AN, Ronquist F. Bayesian tests of topology hypotheses with an example from diving beetles. Syst Biol. 2013;62:660–73.
Article
PubMed
PubMed Central
Google Scholar
Church SH, Ryan JF, Dunn CW. Automation and evaluation of the SOWH test with SOWHAT. Syst Biol. 2015;64:1048–58.
Article
PubMed
PubMed Central
Google Scholar
Rambaut A, Grassly NC. Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees Comput. Appl Biosci. 1997;13:235–8.
Chin K, Pearson D, Ekdale AA, Bambach R, Nichols D, Brown J, et al. Fossil worm burrows reveal very early terrestrial animal activity and shed light on trophic resources after the End-Cretaceous mass extinction. Butler RJ, editor. PLoS One. 2013;8:e70920. Public Library of Science
CAS
Article
PubMed
PubMed Central
Google Scholar
Humphreys GS. Evolution of terrestrial burrowing invertebrates. In: Roach IC, editor. Adv. regolith Proc. CRC LEME Reg. Regolith Symp. 2003. CRC LEME Canberra; 2003. p. 211–5.
Retallack GJ. Triassic palaeosols in the upper narrabeen group of New South Wales. Part I: features of the palaeosols. J Geol Soc Aust. 1976;23:383–99. Taylor & Francis
Article
Google Scholar
Hazen BM. A fossil earthworm (?) from the Paleocene of Wyoming. J Paleontol Paleontological Soc. 1937;11:250.
Google Scholar
Morris SC, Pickerill RK, Harland TL. A possible annelid from the Trenton Limestone (Ordovician) of Quebec, with a review of fossil oligochaetes and other annulate worms. Can J Earth Sci. 1982;19:2150–7. NRC Research Press Ottawa Canada
Article
Google Scholar
Manum SB, Bose MN, Sawyer RT. Clitellate cocoons in freshwater deposits since the Triassic. Zool Scr. 1991;20:347–66. Blackwell Publishing Ltd
Article
Google Scholar
Novo M, Almodóvar A, Fernández R, Giribet G, Díaz Cosín DJ. Understanding the biogeography of a group of earthworms in the Mediterranean basin—The phylogenetic puzzle of Hormogastridae (Clitellata: Oligochaeta). Mol Phylogenet Evol. 2011;61:125–35.
Article
PubMed
Google Scholar
Lartillot N, Lepage T, Blanquart S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics. 2009;25:2286–8.
CAS
Article
PubMed
Google Scholar
Parry L. Fossil focus: annelids. Palaeontol Online. 2014;4:1–8.
Google Scholar
Parry L, Tanner A, Vinther J. The origin of annelids. Smith A, editor. Palaeontology. 2014;57:1091–103.
Article
Google Scholar
Vinther J, Eibye-Jacobsen D, Harper DAT, Fauchald K, Rouse G, Hints O, et al. An early Cambrian stem polychaete with pygidial cirri. Biol Lett. 2011;7:929–32. The Royal Society
Article
PubMed
PubMed Central
Google Scholar
Morris SC, Peel JS. The earliest annelids: lower Cambrian polychaetes from the Sirius Passet Lagerstätte, Peary Land, North Greenland. Acta Palaeontol Pol. 2008;53:137–48. Institute of Paleobiology, Polish Academy of Sciences
Article
Google Scholar
Novo M, Fernández R, Andrade SCS, Marchán DF, Cunha L, Díaz Cosín DJ. Phylogenomic analyses of a Mediterranean earthworm family (Annelida: Hormogastridae). Mol Phylogenet Evol. 2016;94:473–8.
Article
PubMed
Google Scholar
Frizon de Lamotte D, Fourdan B, Leleu S, Leparmentier F, de Clarens P. Style of rifting and the stages of Pangea breakup. Tectonics. 2015;34:1009–29.
Article
Google Scholar
Veevers JJ. Gondwanaland from 650–500 Ma assembly through 320 Ma merger in Pangea to 185–100 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating. Earth Science Rev. 2004;68:1–132.
Article
Google Scholar
Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214. Bioinformatics Institute, University of Auckland, Auckland, New Zealand. alexei@cs.auckland.ac.nz.
Article
PubMed
PubMed Central
Google Scholar
James SW. Re-erection of Rhinodrilidae Benham, 1890, a senior synonym of Pontoscolecidae James, 2012 (Annelida: Clitellata). Zootaxa. 2012;3540:67–8.
Omodeo P. Evolution and biogeography of megadriles (Annelida, Clitellata). Ital J Zool. 2000;67:179–201. Taylor & Francis Group
Article
Google Scholar
Fragoso C, Rojas P. A new ocnerodrilid earthworm genus from Southeastern Mexico (Annelida: Oligochaeta), with a key for the genera of Ocnerodrilidae. Megadrilogica. 2009;13:141–52.
Google Scholar
Csuzdi C. A monograph of the Paleotropical Benhamiinae earthworms (Annelida: Oligochaeta, Acanthodrilidae). Budapest: Hungarian Natural History Museum; Systematic Zoology Research Group of the Hungarian Academy of Sciences; 2010.
Longrich NR, Vinther J, Pyron RA, Pisani D, Gauthier JA, Pianka E, et al. Biogeography of worm lizards (Amphisbaenia) driven by end-Cretaceous mass extinction. Proc Biol Sci. 2015;282:20143034. The Royal Society
Article
PubMed
PubMed Central
Google Scholar
Decaëns T, Porco D, James SW, Brown GG, Chassany V, Dubs F, et al. DNA barcoding reveals diversity patterns of earthworm communities in remote tropical forests of French Guiana. Soil Biol Biochem. 2015;92:171–83.
Article
Google Scholar
Buckley TR, James S, Allwood J, Bartlam S, Howitt R, Prada D. Phylogenetic analysis of New Zealand earthworms (Oligochaeta: Megascolecidae) reveals ancient clades and cryptic taxonomic diversity. Mol Phylogenet Evol. 2011;58:85–96.
Article
PubMed
Google Scholar
Domínguez J, Aira M, Breinholt JW, Stojanovic M, James SW, Pérez-Losada M. Underground evolution: new roots for the old tree of lumbricid earthworms. Mol Phylogenet Evol. 2015;83:7–19.
Article
PubMed
Google Scholar
Blakey R. Deep Time Maps; http://deeptimemaps.com2017.
Crandall KA, Harris DJ, Fetzner JW. The monophyletic origin of freshwater crayfish estimated from nuclear and mitochondrial DNA sequences. Proc Biol Sci. 2000;267:1679–86.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ware JL, Beatty CD, Sánchez Herrera M, Valley S, Johnson J, Kerst C, et al. The petaltail dragonflies (Odonata: Petaluridae): Mesozoic habitat specialists that survive to the modern day. Ali J, editor. J Biogeogr. 2014;41:1291–300.
Article
Google Scholar
McCulloch GA, Wallis GP, Waters JM. A time-calibrated phylogeny of southern hemisphere stoneflies: testing for Gondwanan origins. Mol Phylogenet Evol. 2016;96:150–60.
Article
PubMed
Google Scholar
McCafferty WP, Wang T-Q. Phylogenetic systematics of the major lineages of pannote mayflies (Ephemeroptera: Pannota). Trans Am Entomol Soc. 2000:9–101.
Hawlitschek O, Hendrich L, Balke M. Molecular phylogeny of the squeak beetles, a family with disjunct Palearctic-Australian range. Mol Phylogenet Evol. 2012;62:550–4.
Article
PubMed
Google Scholar
Gates GE. Burmese Earthworms: an introduction to the systematics and biology of megadrile oligochaetes with special reference to Southeast Asia. Trans Am Philos Soc. 1972;62:1–326. American Philosophical Society
Article
Google Scholar
Novo M, Riesgo A, Fernández-Guerra A, Giribet G. Pheromone evolution, reproductive genes, and comparative transcriptomics in Mediterranean earthworms (Annelida, Oligochaeta, Hormogastridae). Mol Biol Evol. 2013;30:1614–29.
CAS
Article
PubMed
Google Scholar