Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S, Basham D, Bowman S, Brooks K, Brown D, Brown S, Chillingworth T, Churcher C, Collins M, Connor R, Cronin A, Davis P, Feltwell T, Fraser A, Gentles S, Goble A, Hamlin N, Harris D, Hidalgo J, Hodgson G, Holroyd S, et al: The genome sequence of Schizosaccharomyces pombe. Nature. 2002, 415: 871-880. 10.1038/nature724.
PubMed
CAS
Google Scholar
VectorBase: I. scapularis. [http://iscapularis.vectorbase.org/]
Insights into social insects from the genome of the honeybee Apis mellifera. Nature. 2006, 443: 931-949. 10.1038/nature05260.
A Database of Drosophila Genes & Genomes. [http://flybase.org/]
Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U, Larroux C, Putnam NH, Stanke M, Adamska M, Darling A, Degnan SM, Oakley TH, Plachetzki DC, Zhai Y, Adamski M, Calcino A, Cummins SF, Goodstein DM, Harris C, Jackson DJ, Leys SP, Shu S, Woodcroft BJ, Vervoort M, Kosik KS, et al: The Amphimedon queenslandica genome and the evolution of animal complexity. Nature. 2010, 466: 720-726. 10.1038/nature09201.
PubMed
CAS
PubMed Central
Google Scholar
King N, Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J, Fairclough S, Hellsten U, Isogai Y, Letunic I, Marr M, Pincus D, Putnam N, Rokas A, Wright KJ, Zuzow R, Dirks W, Good M, Goodstein D, Lemons D, Li W, Lyons JB, Morris A, Nichols S, Richter DJ, Salamov A, Sequencing JG, Bork P, Lim WA, Manning G, et al: The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature. 2008, 451: 783-788. 10.1038/nature06617.
PubMed
CAS
PubMed Central
Google Scholar
Sláviková S, Shy G, Yao Y, Glozman R, Levanony H, Pietrokovski S, Elazar Z, Galili G: The autophagy-associated Atg8 gene family operates both under favorable growth conditions and under starvation stresses in Arabidopsis plants. J Exp Bot. 2005, 56: 2839-2849. 10.1093/jxb/eri276.
PubMed
Google Scholar
Coyle JE, Qamar S, Rajashankar KR, Nikolov DB: Structure of GABARAP in two conformations: implications for GABA(A) receptor localization and tubulin binding. Neuron. 2002, 33: 63-74. 10.1016/S0896-6273(01)00558-X.
PubMed
CAS
Google Scholar
Hu C, Zhang X, Teng YB, Hu HX, Li WF: Structure of autophagy-related protein Atg8 from the silkworm Bombyx mori. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010, 66: 787-790. 10.1107/S1744309110018464.
PubMed
CAS
PubMed Central
Google Scholar
Koopmann R, Muhammad K, Perbandt M, Betzel C, Duszenko M: Trypanosoma brucei ATG8: structural insights into autophagic-like mechanisms in protozoa. Autophagy. 2009, 5: 1085-1091. 10.4161/auto.5.8.9611.
PubMed
CAS
Google Scholar
Kouno T, Mizuguchi M, Tanida I, Ueno T, Kanematsu T, Mori Y, Shinoda H, Hirata M, Kominami E, Kawano K: Solution structure of microtubule-associated protein light chain 3 and identification of its functional subdomains. J Biol Chem. 2005, 280: 24610-24617. 10.1074/jbc.M413565200.
PubMed
CAS
Google Scholar
Kumeta H, Watanabe M, Nakatogawa H, Yamaguchi M, Ogura K, Adachi W, Fujioka Y, Noda NN, Ohsumi Y, Inagaki F: The NMR structure of the autophagy-related protein Atg8. J Biomol NMR. 2010, 47: 237-241. 10.1007/s10858-010-9420-1.
PubMed
CAS
Google Scholar
Paz Y, Elazar Z, Fass D: Structure of GATE-16, membrane transport modulator and mammalian ortholog of autophagocytosis factor Aut7p. J Biol Chem. 2000, 275: 25445-25450. 10.1074/jbc.C000307200.
PubMed
CAS
Google Scholar
Schwarten M, Stoldt M, Mohrluder J, Willbold D: Solution structure of Atg8 reveals conformational polymorphism of the N-terminal domain. Biochem Biophys Res Commun. 2010, 395: 426-431. 10.1016/j.bbrc.2010.04.043.
PubMed
CAS
Google Scholar
Sugawara K, Suzuki NN, Fujioka Y, Mizushima N, Ohsumi Y, Inagaki F: The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes Cells. 2004, 9: 611-618. 10.1111/j.1356-9597.2004.00750.x.
PubMed
CAS
Google Scholar
Noda NN, Ohsumi Y, Inagaki F: ATG systems from the protein structural point of view. Chem Rev. 2009, 109: 1587-1598. 10.1021/cr800459r.
PubMed
CAS
Google Scholar
Bavro VN, Sola M, Bracher A, Kneussel M, Betz H, Weissenhorn W: Crystal structure of the GABA(A)-receptor-associated protein, GABARAP. EMBO Rep. 2002, 3: 183-189. 10.1093/embo-reports/kvf026.
PubMed
CAS
PubMed Central
Google Scholar
Weidberg H, Shvets E, Elazar Z: Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem. 2011, 80: 125-156. 10.1146/annurev-biochem-052709-094552.
PubMed
CAS
Google Scholar
Ichimura Y, Imamura Y, Emoto K, Umeda M, Noda T, Ohsumi Y: In vivo and in vitro reconstitution of Atg8 conjugation essential for autophagy. J Biol Chem. 2004, 279: 40584-40592. 10.1074/jbc.M405860200.
PubMed
CAS
Google Scholar
Nakatogawa H, Ichimura Y, Ohsumi Y: Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell. 2007, 130: 165-178. 10.1016/j.cell.2007.05.021.
PubMed
CAS
Google Scholar
Shvets E, Abada A, Weidberg H, Elazar Z: Dissecting the involvement of LC3B and GATE-16 in p62 recruitment into autophagosomes. Autophagy. 2011, 7: 683-688. 10.4161/auto.7.7.15279.
PubMed
CAS
Google Scholar
Weidberg H, Shpilka T, Shvets E, Abada A, Shimron F, Elazar Z: LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev Cell. 2011, 20: 444-454. 10.1016/j.devcel.2011.02.006.
PubMed
CAS
Google Scholar
He H, Dang Y, Dai F, Guo Z, Wu J, She X, Pei Y, Chen Y, Ling W, Wu C, Zhao S, Liu JO, Yu L: Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem. 2003, 278: 29278-29287. 10.1074/jbc.M303800200.
PubMed
CAS
Google Scholar
Xin Y, Yu L, Chen Z, Zheng L, Fu Q, Jiang J, Zhang P, Gong R, Zhao S: Cloning, expression patterns, and chromosome localization of three human and two mouse homologues of GABA(A) receptor-associated protein. Genomics. 2001, 74: 408-413. 10.1006/geno.2001.6555.
PubMed
CAS
Google Scholar
Nemos C, Mansuy V, Vernier-Magnin S, Fraichard A, Jouvenot M, Delage-Mourroux R: Expression of gec1/GABARAPL1 versus GABARAP mRNAs in human: predominance of gec1/GABARAPL1 in the central nervous system. Brain Res Mol Brain Res. 2003, 119: 216-219.
PubMed
CAS
Google Scholar
Sagiv Y, Legesse-Miller A, Porat A, Elazar Z: GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. EMBO J. 2000, 19: 1494-1504. 10.1093/emboj/19.7.1494.
PubMed
CAS
PubMed Central
Google Scholar
Egami Y, Kiryu-Seo S, Yoshimori T, Kiyama H: Induced expressions of Rab24 GTPase and LC3 in nerve-injured motor neurons. Biochem Biophys Res Commun. 2005, 337: 1206-1213. 10.1016/j.bbrc.2005.09.171.
PubMed
CAS
Google Scholar
Kirisako T, Baba M, Ishihara N, Miyazawa K, Ohsumi M, Yoshimori T, Noda T, Ohsumi Y: Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol. 1999, 147: 435-446. 10.1083/jcb.147.2.435.
PubMed
CAS
PubMed Central
Google Scholar
Zois CE, Giatromanolaki A, Kainulainen H, Botaitis S, Torvinen S, Simopoulos C, Kortsaris A, Sivridis E, Koukourakis MI: Lung autophagic response following exposure of mice to whole body irradiation, with and without amifostine. Biochem Biophys Res Commun. 2011, 404: 552-558. 10.1016/j.bbrc.2010.12.024.
PubMed
CAS
Google Scholar
van Zutphen T, Baerends RJ, Susanna KA, de Jong A, Kuipers OP, Veenhuis M, van der Klei IJ: Adaptation of Hansenula polymorpha to methanol: a transcriptome analysis. BMC Genomics. 2010, 11: 1-10.1186/1471-2164-11-1.
PubMed
PubMed Central
Google Scholar
Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M: FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007, 6: 458-471. 10.1016/j.cmet.2007.11.001.
PubMed
CAS
Google Scholar
Polager S, Ofir M, Ginsberg D: E2F1 regulates autophagy and the transcription of autophagy genes. Oncogene. 2008, 27: 4860-4864. 10.1038/onc.2008.117.
PubMed
CAS
Google Scholar
Sengupta A, Molkentin JD, Yutzey KE: FoxO transcription factors promote autophagy in cardiomyocytes. J Biol Chem. 2009, 284: 28319-28331. 10.1074/jbc.M109.024406.
PubMed
CAS
PubMed Central
Google Scholar
Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL: FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 2007, 6: 472-483. 10.1016/j.cmet.2007.11.004.
PubMed
CAS
Google Scholar
Elazar Z, Scherz-Shouval R, Shorer H: Involvement of LMA1 and GATE-16 family members in intracellular membrane dynamics. Biochim Biophys Acta. 2003, 1641: 145-156. 10.1016/S0167-4889(03)00086-7.
PubMed
CAS
Google Scholar
Legesse-Miller A, Sagiv Y, Porat A, Elazar Z: Isolation and characterization of a novel low molecular weight protein involved in intra-Golgi traffic. J Biol Chem. 1998, 273: 3105-3109. 10.1074/jbc.273.5.3105.
PubMed
CAS
Google Scholar
Muller JM, Shorter J, Newman R, Deinhardt K, Sagiv Y, Elazar Z, Warren G, Shima DT: Sequential SNARE disassembly and GATE-16-GOS-28 complex assembly mediated by distinct NSF activities drives Golgi membrane fusion. J Cell Biol. 2002, 157: 1161-1173. 10.1083/jcb.200202082.
PubMed
PubMed Central
Google Scholar
Kuznetsov SA, Gelfand VI: 18 kDa microtubule-associated protein: identification as a new light chain (LC-3) of microtubule-associated protein 1 (MAP-1). FEBS Lett. 1987, 212: 145-148. 10.1016/0014-5793(87)81574-0.
PubMed
CAS
Google Scholar
Mann SS, Hammarback JA: Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B. J Biol Chem. 1994, 269: 11492-11497.
PubMed
CAS
Google Scholar
Wang H, Bedford FK, Brandon NJ, Moss SJ, Olsen RW: GABA(A)-receptor-associated protein links GABA(A) receptors and the cytoskeleton. Nature. 1999, 397: 69-72. 10.1038/16264.
PubMed
CAS
Google Scholar
Leil TA, Chen ZW, Chang CS, Olsen RW: GABAA receptor-associated protein traffics GABAA receptors to the plasma membrane in neurons. J Neurosci. 2004, 24: 11429-11438. 10.1523/JNEUROSCI.3355-04.2004.
PubMed
CAS
Google Scholar
Chen ZW, Chang CS, Leil TA, Olsen RW: C-terminal modification is required for GABARAP-mediated GABA(A) receptor trafficking. J Neurosci. 2007, 27: 6655-6663. 10.1523/JNEUROSCI.0919-07.2007.
PubMed
CAS
Google Scholar
Green F, O'Hare T, Blackwell A, Enns CA: Association of human transferrin receptor with GABARAP. FEBS Lett. 2002, 518: 101-106. 10.1016/S0014-5793(02)02655-8.
PubMed
CAS
Google Scholar
Nakamura T, Hayashi T, Nasu-Nishimura Y, Sakaue F, Morishita Y, Okabe T, Ohwada S, Matsuura K, Akiyama T: PX-RICS mediates ER-to-Golgi transport of the N-cadherin/beta-catenin complex. Genes Dev. 2008, 22: 1244-1256. 10.1101/gad.1632308.
PubMed
CAS
PubMed Central
Google Scholar
Kittler JT, Rostaing P, Schiavo G, Fritschy JM, Olsen R, Triller A, Moss SJ: The subcellular distribution of GABARAP and its ability to interact with NSF suggest a role for this protein in the intracellular transport of GABA(A) receptors. Mol Cell Neurosci. 2001, 18: 13-25. 10.1006/mcne.2001.1005.
PubMed
CAS
Google Scholar
Chen L, Wang H, Vicini S, Olsen RW: The gamma-aminobutyric acid type A (GABAA) receptor-associated protein (GABARAP) promotes GABAA receptor clustering and modulates the channel kinetics. Proc Natl Acad Sci USA. 2000, 97: 11557-11562.
PubMed
CAS
PubMed Central
Google Scholar
Wang H, Olsen RW: Binding of the GABA(A) receptor-associated protein (GABARAP) to microtubules and microfilaments suggests involvement of the cytoskeleton in GABARAPGABA(A) receptor interaction. J Neurochem. 2000, 75: 644-655.
PubMed
CAS
Google Scholar
Chen C, Li JG, Chen Y, Huang P, Wang Y, Liu-Chen LY: GEC1 interacts with the kappa opioid receptor and enhances expression of the receptor. J Biol Chem. 2006, 281: 7983-7993. 10.1074/jbc.M509805200.
PubMed
CAS
Google Scholar
Mansuy V, Boireau W, Fraichard A, Schlick JL, Jouvenot M, Delage-Mourroux R: GEC1, a protein related to GABARAP, interacts with tubulin and GABA(A) receptor. Biochem Biophys Res Commun. 2004, 325: 639-648. 10.1016/j.bbrc.2004.10.072.
PubMed
CAS
Google Scholar
Chen C, Wang Y, Huang P, Liu-Chen LY: Effects of C-terminal modifications of GEC1 Protein and {gamma}-aminobutyric acid type A (GABAA) receptor-associated protein (GABARAP), two microtubule-associated proteins, on {kappa} opioid receptor expression. J Biol Chem. 2011, 286: 15106-15115. 10.1074/jbc.M111.230896.
PubMed
CAS
PubMed Central
Google Scholar
Chen Y, Chen C, Kotsikorou E, Lynch DL, Reggio PH, Liu-Chen LY: GEC1-kappa opioid receptor binding involves hydrophobic interactions: GEC1 has chaperone-like effect. J Biol Chem. 2009, 284: 1673-1685.
PubMed
CAS
PubMed Central
Google Scholar
Tamura N, Oku M, Sakai Y: Atg8 regulates vacuolar membrane dynamics in a lipidation-independent manner in Pichia pastoris. J Cell Sci. 2010, 123: 4107-4116. 10.1242/jcs.070045.
PubMed
CAS
Google Scholar
Legesse-Miller A, Sagiv Y, Glozman R, Elazar Z: Aut7p, a soluble autophagic factor, participates in multiple membrane trafficking processes. J Biol Chem. 2000, 275: 32966-32973.
PubMed
CAS
Google Scholar
Harding TM, Morano KA, Scott SV, Klionsky DJ: Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol. 1995, 131: 591-602. 10.1083/jcb.131.3.591.
PubMed
CAS
Google Scholar
Lang T, Schaeffeler E, Bernreuther D, Bredschneider M, Wolf DH, Thumm M: Aut2p and Aut7p, two novel microtubule-associated proteins are essential for delivery of autophagic vesicles to the vacuole. EMBO J. 1998, 17: 3597-3607. 10.1093/emboj/17.13.3597.
PubMed
CAS
PubMed Central
Google Scholar
Scott SV, Hefner-Gravink A, Morano KA, Noda T, Ohsumi Y, Klionsky DJ: Cytoplasm-to-vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole. Proc Natl Acad Sci USA. 1996, 93: 12304-12308. 10.1073/pnas.93.22.12304.
PubMed
CAS
PubMed Central
Google Scholar
Lynch-Day MA, Klionsky DJ: The Cvt pathway as a model for selective autophagy. FEBS Lett. 2010, 584: 1359-1366. 10.1016/j.febslet.2010.02.013.
PubMed
CAS
PubMed Central
Google Scholar
Suzuki K, Kondo C, Morimoto M, Ohsumi Y: Selective transport of alpha-mannosidase by autophagic pathways: identification of a novel receptor, Atg34p. J Biol Chem. 2010, 285: 30019-30025. 10.1074/jbc.M110.143511.
PubMed
CAS
PubMed Central
Google Scholar
Huang WP, Scott SV, Kim J, Klionsky DJ: The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J Biol Chem. 2000, 275: 5845-5851. 10.1074/jbc.275.8.5845.
PubMed
CAS
Google Scholar
Kim J, Huang WP, Klionsky DJ: Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. J Cell Biol. 2001, 152: 51-64. 10.1083/jcb.152.1.51.
PubMed
CAS
PubMed Central
Google Scholar
Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y: The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol. 2000, 151: 263-276. 10.1083/jcb.151.2.263.
PubMed
CAS
PubMed Central
Google Scholar
Tanida I, Mizushima N, Kiyooka M, Ohsumi M, Ueno T, Ohsumi Y, Kominami E: Apg7p/Cvt2p: A novel protein-activating enzyme essential for autophagy. Mol Biol Cell. 1999, 10: 1367-1379.
PubMed
CAS
PubMed Central
Google Scholar
Schlumpberger M, Schaeffeler E, Straub M, Bredschneider M, Wolf DH, Thumm M: AUT1, a gene essential for autophagocytosis in the yeast Saccharomyces cerevisiae. J Bacteriol. 1997, 179: 1068-1076.
PubMed
CAS
PubMed Central
Google Scholar
Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Noda T, Ohsumi Y: A ubiquitin-like system mediates protein lipidation. Nature. 2000, 408: 488-492. 10.1038/35044114.
PubMed
CAS
Google Scholar
Suzuki K, Ohsumi Y: Current knowledge of the pre-autophagosomal structure (PAS). FEBS Lett. 2010, 584: 1280-1286. 10.1016/j.febslet.2010.02.001.
PubMed
CAS
Google Scholar
Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y: The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 2001, 20: 5971-5981. 10.1093/emboj/20.21.5971.
PubMed
CAS
PubMed Central
Google Scholar
Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y: The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem. 2007, 282: 37298-37302. 10.1074/jbc.C700195200.
PubMed
CAS
Google Scholar
Abeliovich H, Dunn WA, Kim J, Klionsky DJ: Dissection of autophagosome biogenesis into distinct nucleation and expansion steps. J Cell Biol. 2000, 151: 1025-1034. 10.1083/jcb.151.5.1025.
PubMed
CAS
PubMed Central
Google Scholar
Xie Z, Nair U, Klionsky DJ: Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell. 2008, 19: 3290-3298. 10.1091/mbc.E07-12-1292.
PubMed
CAS
PubMed Central
Google Scholar
Amar N, Lustig G, Ichimura Y, Ohsumi Y, Elazar Z: Two newly identified sites in the ubiquitin-like protein Atg8 are essential for autophagy. EMBO Rep. 2006, 7: 635-642.
PubMed
CAS
PubMed Central
Google Scholar
Ho KH, Chang HE, Huang WP: Mutation at the cargo-receptor binding site of Atg8 also affects its general autophagy regulation function. Autophagy. 2009, 5: 461-471. 10.4161/auto.5.4.7696.
PubMed
CAS
Google Scholar
Krick R, Bremer S, Welter E, Schlotterhose P, Muehe Y, Eskelinen EL, Thumm M: Cdc48/p97 and Shp1/p47 regulate autophagosome biogenesis in concert with ubiquitin-like Atg8. J Cell Biol. 2010, 190: 965-973. 10.1083/jcb.201002075.
PubMed
CAS
PubMed Central
Google Scholar
Chakrama FZ, Seguin-Py S, Le Grand JN, Fraichard A, Delage-Mourroux R, Despouy G, Perez V, Jouvenot M, Boyer-Guittaut M: GABARAPL1 (GEC1) associates with autophagic vesicles. Autophagy. 2010
Google Scholar
Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000, 19: 5720-5728. 10.1093/emboj/19.21.5720.
PubMed
CAS
PubMed Central
Google Scholar
Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T: LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci. 2004, 117: 2805-2812. 10.1242/jcs.01131.
PubMed
CAS
Google Scholar
Tanida I, Ueno T, Kominami E: LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol. 2004, 36: 2503-2518. 10.1016/j.biocel.2004.05.009.
PubMed
CAS
Google Scholar
Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T: The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell. 2008, 19: 2092-2100. 10.1091/mbc.E07-12-1257.
PubMed
CAS
PubMed Central
Google Scholar
Hemelaar J, Lelyveld VS, Kessler BM, Ploegh HL: A single protease, Apg4B, is specific for the autophagy-related ubiquitin-like proteins GATE-16, MAP1-LC3, GABARAP, and Apg8L. J Biol Chem. 2003, 278: 51841-51850. 10.1074/jbc.M308762200.
PubMed
CAS
Google Scholar
Tanida I, Ueno T, Kominami E: Human light chain 3/MAP1LC3B is cleaved at its carboxyl-terminal Met121 to expose Gly120 for lipidation and targeting to autophagosomal membranes. J Biol Chem. 2004, 279: 47704-47710. 10.1074/jbc.M407016200.
PubMed
CAS
Google Scholar
Li M, Hou Y, Wang J, Chen X, Shao ZM, Yin XM: Kinetics comparisons of mammalian Atg4 homologues indicate selective preferences toward diverse Atg8 substrates. J Biol Chem. 2011, 286: 7327-7338. 10.1074/jbc.M110.199059.
PubMed
CAS
PubMed Central
Google Scholar
Scherz-Shouval R, Sagiv Y, Shorer H, Elazar Z: The COOH terminus of GATE-16, an intra-Golgi transport modulator, is cleaved by the human cysteine protease HsApg4A. J Biol Chem. 2003, 278: 14053-14058. 10.1074/jbc.M212108200.
PubMed
CAS
Google Scholar
Betin VM, Lane JD: Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis. J Cell Sci. 2009, 122: 2554-2566. 10.1242/jcs.046250.
PubMed
CAS
PubMed Central
Google Scholar
Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z: Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007, 26: 1749-1760. 10.1038/sj.emboj.7601623.
PubMed
CAS
PubMed Central
Google Scholar
Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y: In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell. 2004, 15: 1101-1111.
PubMed
CAS
PubMed Central
Google Scholar
Tanida I, Waguri S: Measurement of autophagy in cells and tissues. Methods Mol Biol. 2010, 648: 193-214. 10.1007/978-1-60761-756-3_13.
PubMed
CAS
Google Scholar
Fujita N, Hayashi-Nishino M, Fukumoto H, Omori H, Yamamoto A, Noda T, Yoshimori T: An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol Biol Cell. 2008, 19: 4651-4659. 10.1091/mbc.E08-03-0312.
PubMed
CAS
PubMed Central
Google Scholar
Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A: A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol. 2009, 11: 1433-1437. 10.1038/ncb1991.
PubMed
CAS
Google Scholar
Sou YS, Waguri S, Iwata J, Ueno T, Fujimura T, Hara T, Sawada N, Yamada A, Mizushima N, Uchiyama Y, Kominami E, Tanaka K, Komatsu M: The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell. 2008, 19: 4762-4775. 10.1091/mbc.E08-03-0309.
PubMed
CAS
PubMed Central
Google Scholar
Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V, Elazar Z: LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 2010, 29: 1792-1802. 10.1038/emboj.2010.74.
PubMed
CAS
PubMed Central
Google Scholar
Mauvezin C, Orpinell M, Francis VA, Mansilla F, Duran J, Ribas V, Palacin M, Boya P, Teleman AA, Zorzano A: The nuclear cofactor DOR regulates autophagy in mammalian and Drosophila cells. EMBO Rep. 2010, 11: 37-44. 10.1038/embor.2009.242.
PubMed
CAS
PubMed Central
Google Scholar
Nowak J, Archange C, Tardivel-Lacombe J, Pontarotti P, Pebusque MJ, Vaccaro MI, Velasco G, Dagorn JC, Iovanna JL: The TP53INP2 protein is required for autophagy in mammalian cells. Mol Biol Cell. 2009, 20: 870-881.
PubMed
CAS
PubMed Central
Google Scholar
Lee IH, Finkel T: Regulation of autophagy by the p300 acetyltransferase. J Biol Chem. 2009, 284: 6322-6328.
PubMed
CAS
Google Scholar
Cherra SJ, Kulich SM, Uechi G, Balasubramani M, Mountzouris J, Day BW, Chu CT: Regulation of the autophagy protein LC3 by phosphorylation. J Cell Biol. 2010, 190: 533-539. 10.1083/jcb.201002108.
PubMed
CAS
PubMed Central
Google Scholar
Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005, 171: 603-614. 10.1083/jcb.200507002.
PubMed
PubMed Central
Google Scholar
Kirkin V, Lamark T, Sou YS, Bjørkøy G, Nunn JL, Bruun JA, Shvets E, McEwan DG, Clausen TH, Wild P, Bilusic I, Theurillat JP, Øvervatn A, Ishii T, Elazar Z, Komatsu M, Dikic I, Johansen T: A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell. 2009, 33: 505-516. 10.1016/j.molcel.2009.01.020.
PubMed
CAS
Google Scholar
Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A, Rogov V, Löhr F, Popovic D, Occhipinti A, Reichert AS, Terzic J, Dötsch V, Ney PA, Dikic I: Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 2010, 11: 45-51. 10.1038/embor.2009.256.
PubMed
CAS
PubMed Central
Google Scholar
Schwarten M, Mohrluder J, Ma P, Stoldt M, Thielmann Y, Stangler T, Hersch N, Hoffmann B, Merkel R, Willbold D: Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy. Autophagy. 2009, 5: 690-698. 10.4161/auto.5.5.8494.
PubMed
CAS
Google Scholar
Filimonenko M, Stuffers S, Raiborg C, Yamamoto A, Malerod L, Fisher EM, Isaacs A, Brech A, Stenmark H, Simonsen A: Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J Cell Biol. 2007, 179: 485-500. 10.1083/jcb.200702115.
PubMed
CAS
PubMed Central
Google Scholar
Clausen TH, Lamark T, Isakson P, Finley K, Larsen KB, Brech A, Øvervatn A, Stenmark H, Bjørkøy G, Simonsen A, Johansen T: p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy. Autophagy. 2010, 6: 330-344. 10.4161/auto.6.3.11226.
PubMed
CAS
Google Scholar
Filimonenko M, Isakson P, Finley KD, Anderson M, Jeong H, Melia TJ, Bartlett BJ, Myers KM, Birkeland HC, Lamark T, Krainc D, Brech A, Stenmark H, Simonsen A, Yamamoto A: The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol Cell. 2010, 38: 265-279. 10.1016/j.molcel.2010.04.007.
PubMed
CAS
PubMed Central
Google Scholar
Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F: The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol. 2009, 10: 1215-1221. 10.1038/ni.1800.
PubMed
CAS
Google Scholar
Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, Richter B, Korac J, Waidmann O, Choudhary C, Dötsch V, Bumann D, Dikic I: Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science. 2011, 333: 228-233. 10.1126/science.1205405.
PubMed
CAS
PubMed Central
Google Scholar
Shvets E, Fass E, Scherz-Shouval R, Elazar Z: The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes. J Cell Sci. 2008, 121: 2685-2695. 10.1242/jcs.026005.
PubMed
CAS
Google Scholar
Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno T, Kominami E, Yamane T, Tanaka K, Komatsu M: Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem. 2008, 283: 22847-22857. 10.1074/jbc.M802182200.
PubMed
CAS
Google Scholar
Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007, 282: 24131-24145. 10.1074/jbc.M702824200.
PubMed
CAS
Google Scholar
Kraft C, Peter M, Hofmann K: Selective autophagy: ubiquitin-mediated recognition and beyond. Nat Cell Biol. 2010, 12: 836-841. 10.1038/ncb0910-836.
PubMed
CAS
Google Scholar
Yamaguchi M, Noda NN, Nakatogawa H, Kumeta H, Ohsumi Y, Inagaki F: Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. J Biol Chem. 2010, 285: 29599-29607. 10.1074/jbc.M110.113670.
PubMed
CAS
PubMed Central
Google Scholar
Noda NN, Kumeta H, Nakatogawa H, Satoo K, Adachi W, Ishii J, Fujioka Y, Ohsumi Y, Inagaki F: Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells. 2008, 13: 1211-1218. 10.1111/j.1365-2443.2008.01238.x.
PubMed
CAS
Google Scholar
Jiang S, Heller B, Tagliabracci VS, Zhai L, Irimia JM, DePaoli-Roach AA, Wells CD, Skurat AV, Roach PJ: Starch binding domain-containing protein 1/genethonin 1 is a novel participant in glycogen metabolism. J Biol Chem. 2010, 285: 34960-34971. 10.1074/jbc.M110.150839.
PubMed
CAS
PubMed Central
Google Scholar
Kuma A, Matsui M, Mizushima N: LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. Autophagy. 2007, 3: 323-328.
PubMed
CAS
Google Scholar
Ruiz-Trillo I, Roger AJ, Burger G, Gray MW, Lang BF: A phylogenomic investigation into the origin of metazoa. Mol Biol Evol. 2008, 25: 664-672. 10.1093/molbev/msn006.
PubMed
CAS
Google Scholar
Salzberg Y, Eldar T, Karminsky OD, Itach SB, Pietrokovski S, Don J: Meig1 deficiency causes a severe defect in mouse spermatogenesis. Dev Biol. 2010, 338: 158-167. 10.1016/j.ydbio.2009.11.028.
PubMed
CAS
Google Scholar
Schneider TD, Stephens RM: Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 1990, 18: 6097-6100. 10.1093/nar/18.20.6097.
PubMed
CAS
PubMed Central
Google Scholar
Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH: CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 2011, 39: D225-D229. 10.1093/nar/gkq1189.
PubMed
CAS
PubMed Central
Google Scholar
Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A: The Pfam protein families database. Nucleic Acids Res. 2010, 38: D211-D222. 10.1093/nar/gkp985.
PubMed
CAS
PubMed Central
Google Scholar