Skip to main content
Log in

Normalization and analysis of DNA microarray data by self-consistency and local regression

  • Research
  • Published:
Genome Biology Aims and scope Submit manuscript

Abstract

Background

With the advent of DNA hybridization microarrays comes the remarkable ability, in principle, to simultaneously monitor the expression levels of thousands of genes. The quantiative comparison of two or more microarrays can reveal, for example, the distinct patterns of gene expression that define different cellular phenotypes or the genes induced in the cellular response to insult or changing environmental conditions. Normalization of the measured intensities is a prerequisite of such comparisons, and indeed, of any statistical analysis, yet insufficient attention has been paid to its systematic study. The most straightforward normalization techniques in use rest on the implicit assumption of linear response between true expression level and output intensity. We find that these assumptions are not generally met, and that these simple methods can be improved.

Results

We have developed a robust semi-parametric normalization technique based on the assumption that the large majority of genes will not have their relative expression levels changed from one treatment group to the next, and on the assumption that departures of the response from linearity are small and slowly varying. We use local regression to estimate the normalized expression levels as well as the expression level-dependent error variance.

Conclusions

We illustrate the use of this technique in a comparison of the expression profiles of cultured rat mesothelioma cells under control and under treatment with potassium bromate, validated using quantitative PCR on a selected set of genes. We tested the method using data simulated under various error models and find that it performs well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Fodor SP, Rava RP, Huang XC, Pease AC, Holmes CP, Adams CL: Multiplexed biochemical assays with biological chips. Nature. 1993, 364: 555-556. 10.1038/364555a0.

    Article  PubMed  CAS  Google Scholar 

  2. Schena M, Shalon D, Davis RW, Brown PO: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995, 270: 467-470.

    Article  PubMed  CAS  Google Scholar 

  3. DeRisi J, Penland L, Brown PO, Bittner ML, Meltzer PP, Ray M, Chen Y, Su YA, Trent JM: Use of a cDNA microarray to analyze gene expression patterns in human cancer. Nat Genet. 1996, 14: 457-460.

    Article  PubMed  CAS  Google Scholar 

  4. Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL: Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol. 1996, 14: 1675-1680.

    Article  PubMed  CAS  Google Scholar 

  5. DeRisi JL, Iyer VR, Brown PO: Exploring the metabolic and genetic control of gene expression on a genomic scale. Science. 1997, 278: 680-686. 10.1126/science.278.5338.680.

    Article  PubMed  CAS  Google Scholar 

  6. Iyer VR, Eisen MB, Ross DT, Schuler G, Moore T, Lee JCF, Trent JM, Staudt LM, Hudson J, Boguski MS, et al: The transcriptional program in the response of human fibroblasts to serum. Science. 1999, 283: 83-87. 10.1006/abio.2000.4611.

    Article  PubMed  CAS  Google Scholar 

  7. Wodicka L, Dong H, Mittmann M, Ho MH, Lockhart DJ: Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol. 1997, 15: 1359-1367.

    Article  PubMed  CAS  Google Scholar 

  8. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell. 1998, 9: 3273-3297.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Cleveland WS, Devlin SJ: Locally weighted regression: An approach to regression analysis by local fitting. J Am Stat Assoc. 1988, 83: 596-610.

    Article  Google Scholar 

  10. Loader CR: Local likelihood density estimation. Annls Statistics. 1996, 24: 1602-1618. 10.1214/aos/1032298287.

    Article  Google Scholar 

  11. Loader CR: Local Regression and Likelihood. New York: Springer-Verlag;. 1999

    Google Scholar 

  12. Crosby LM, Hyder KS, DeAngelo AB, Kepler TB, Gaskill B, Benavides GR, Yoon L, Morgan KT: Morphologic analysis correlates with gene expression changes in cultured F344 rat mesothelial cells. Toxicol Appl Pharmacol. 2000, 169: 205-221. 10.1006/taap.2000.9049.

    Article  PubMed  CAS  Google Scholar 

  13. NoSeCoLor: normalization by self-consistency and local regression, (software and documentation). [ftp://ftp.santafe.edu/pub/kepler/]

  14. Morgan KT, Ni H, Brown HR, Yoon L, Qualls CW, Crosby LM, Reynolds R, Gaskill B, Anderson SP, Kepler TB, et al: Application of cDNA microarray technology to in vitrotoxicology and the selection of genes for a real time RT-PCR-based screen for oxidative stress in Hep-G2 cells. Toxicol Pathol. 2002,

    Google Scholar 

Download references

Acknowledgements

This work was supported by grant number MCB 9357637 from the National Science Foundation (T.B.K.) and by a research grant from Glaxo-Wellcome, Inc. (T.B.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas B Kepler.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kepler, T.B., Crosby, L. & Morgan, K.T. Normalization and analysis of DNA microarray data by self-consistency and local regression. Genome Biol 3, research0037.1 (2002). https://doi.org/10.1186/gb-2002-3-7-research0037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/gb-2002-3-7-research0037

Keywords

Navigation