Arthritis Research & Therapy

, 14:P17 | Cite as

GCIP, Id like HLH protein, negatively regulates cell proliferation of rheumatoid synovial cells via interaction with CBP

  • Hidetoshi Fujita
  • Minako Nakazawa
  • Satoko Aratani
  • Kusuki Nishioka
  • Akiyoshi Fukamizu
  • Toshihiro Nakajima
Poster presentation


NIH3T3 Cell Synovial Cell Fibroblast NIH3T3 Synovial Hyperplasia Transient Transfection Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Rheumatoid arthritis (RA) is one of the most common articular diseases with a prevalence of 1% worldwide [1, 2]. The clinical features of RA include chronic inflammation of systemic joints associated with synovial hyperplasia followed by impairment of quality of life [3, 4]. Recently, we have shown that Synoviolin/Hrd1, an E3 ubiquitin ligase, is a novel causative factor for arthropathy [5]. However, the mechanism that regulates synovial cell outgrowth is not fully understood.

Materials and methods

Human embryonic kidney (HEK)-293 cells, HEK-293T cells, NIH3T3 cells and synovial cells were cultured in DMEM medium. Transient transfection assays were performed in HEK-293 cells and HEK-293T cells. HEK-293 cells transfected with NF-κB-Luc were treated with 100 ng/ml of phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), or 10 ng/ml of TNF-α for 24 h, and luciferase activities were measured. siRNAs with 21 nucleotides for human GCIP were chemically synthesized. Transfection with siRNAs and cell survival assay were carried out.


Grap2 cyclin D interacting protein (GCIP), Id like HLH protein, was down-regulated in the rheumatoid synovial cells. Introduction of GCIP into mouse fibroblast NIH3T3 cells resulted in growth suppression, whereas knockdown with siRNAs in synovial cells enhanced cell growth. GCIP associated with CBP and repressed transcription of CREB-target genes such as cyclin D1 by inhibition of interaction between CBP and RNA polymerase II complexes. Binding assays revealed that GCIP bound to CBP via acidic region, not HLH domain, and this interaction was regulated by phosphorylation of GCIP in a cell cycle-dependent manner. Therefore, GCIP has inhibitory effect on cell proliferation via interference with CBP-mediated transcription.


We propose the novel inhibitory mechanisms of Id protein family; the coactivator CBP is a functional target. Furthermore, down-regulation of GCIP may be a key factor in rheumatoid synovial cell outgrowth.


  1. 1.
    Harris ED: Rheumatoid arthritis. Pathophysiology and implications for therapy. N Engl J Med. 1990, 322: 1277-1289. 10.1056/NEJM199005033221805.CrossRefPubMedGoogle Scholar
  2. 2.
    Feldmann M, Brennan FM, Maini RN: Rheumatoid arthritis. Cell. 1996, 85: 307-310. 10.1016/S0092-8674(00)81109-5.CrossRefPubMedGoogle Scholar
  3. 3.
    Aarvak T, Natvig JB: Cell-cell interactions in synovitis: antigen presenting cells and T cell interaction in rheumatoid arthritis. Arthritis Res. 2001, 3: 13-17. 10.1186/ar135.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Schett G, Tohidast-Akra M, Steiner G, Smolen J: The stressed synovium. Arthritis Res. 2001, 3: 80-86. 10.1186/ar144.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Amano T, Yamasaki S, Yagishita N, Tsuchimochi K, Shin H, Kawahara K, Aratani S, Fujita H, Zhang L, Ikeda R, Fujii R, Miura N, Komiya S, Nishioka K, Maruyama I, Fukamizu A, Nakajima T: Synoviolin/Hrd1, an E3 ubiquitin ligase, as a novel pathogenic factor for arthropathy. Genes Dev. 2003, 17: 2436-2449. 10.1101/gad.1096603.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Workman CJ, Wang Y, El Kasmi KC, Pardoll DM, Murray PJ, Drake CG, Vignali DA: LAG-3 regulates plasmacytoid dendritic cell homeostasis. J Immunol. 2009, 182: 1885-1891. 10.4049/jimmunol.0800185.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Treibel F, Hacene K, Pichon MF: A soluble lymphocyte activation gene-3 (sLAG-3) protein as a prognostic factor in human breast cancer expressing estrogen or progesterone receptors. Cancer Letters. 2006, 235: 147-153. 10.1016/j.canlet.2005.04.015.CrossRefGoogle Scholar
  8. 8.
    Triebel F: LAG-3: a regulator of T-cell and DC responses and its use in therapeutic vaccination. Trends Immunol. 2003, 24: 619-622. 10.1016/ Scholar

Copyright information

© Fujita et al.; licensee BioMed Central Ltd. 2012

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Hidetoshi Fujita
    • 1
    • 2
  • Minako Nakazawa
    • 1
  • Satoko Aratani
    • 1
    • 3
  • Kusuki Nishioka
    • 3
  • Akiyoshi Fukamizu
    • 4
  • Toshihiro Nakajima
    • 1
    • 3
  1. 1.Institute of Medical ScienceSt Marianna University School of MedicineKanagawaJapan
  2. 2.Advanced Radiation Biology Research Program, and Hospital, Research Center for Charged Particle TherapyNational Institute of Radiological SciencesInage-ku, ChibaJapan
  3. 3.Institute of Medical ScienceTokyo Medical UniversityShinjyuku-ku, TokyoJapan
  4. 4.Graduate School of Life and Environmental SciencesUniversity of TsukubaIbarakiJapan

Personalised recommendations