Earth, Planets and Space

, Volume 56, Issue 2, pp 249–258 | Cite as

Atmospheric density and pressure inferred from the meteor diffusion coefficient and airglow O2b temperature in the MLT region

  • H. Takahashi
  • T. Nakamura
  • K. Shiokawa
  • T. Tsuda
  • L. M. Lima
  • D. Gobbi
Open Access
Research News


Atmospheric density and pressure in the upper mesosphere-lower thermosphere (MLT) region, around 90 km, are inferred from the meteor trail ambipolar diffusion coefficients, D, and simultaneously observed airglow O2b rotational temperatures. For the present study simultaneous observation data from the meteor radar and SATI imaging spectrometer taken at Shigaraki MU radar observatory (34.9°N, 136.1°E) were used. From the 18 winter nights of data, it is observed that in most of the cases nocturnal variation of the O2 temperature has a good correlation with D at 90 to 92 km. The inferred densities at 90 km showed a negative correlation with temperature variation, suggesting a constant pressure process. The O2 emission intensity shows a good correlation with the temperature, and negative correlation with the density variation. The OH rotational temperature and D at 87 km also showed similar results to the case of the O2 temperature.

Key words

Airglow meteor trail temperature density pressure 


  1. Baker, D. J. and J. A. T. Stair, Rocket measurements of the altitude distributions of the hydroxyl airglow, Physica Scripta, 37, 611–622, 1988.CrossRefGoogle Scholar
  2. Bittner, M., D. Offermann, H. H. Graef, M. Donner, K. Hamilton, An 18-year time series of OH temperatures and middle atmosphere decadal variations, J. Atmos. Sol. Terr. Phys., 64, 1147–1166, 2002.CrossRefGoogle Scholar
  3. Campbell, I. M. and C. N. Gray, Rate constants for O(3P) recombination and association with N(4S), Chem. Phys. Lett., 8, 259, 1973.Google Scholar
  4. Cervera, M. A. and I. M. Reid, Comparison of atmospheric parameters derived from meteor observations with CIRA, Radio Sci., 35(3), 833–843, 2000.CrossRefGoogle Scholar
  5. Chilson, P. B., P. Czechowsky, and G. Schmidt, A comparison of ambipolar diffusion coefficients in meteor trains using VHF radar and UV lidar, Geophys. Res. Letts., 23(20), 2745–2748, 1996.CrossRefGoogle Scholar
  6. Greer, R. G. H., D. P. Murtagh, I. C. McDade, P. H. G. Dickinson, L. Thomas, D. B. Jenkins, J. Stegman, E. J. Llewellyn, G. Witt, D. J. Mackinnon, and E. R. Williams, Eton 1: A data base pertinent to the study of energy transfer in the oxygen nightglow, Planet. Space Sci., 34, 771–788, 1986.CrossRefGoogle Scholar
  7. Hocking, W. K., Temperatures using radar-meteor decay times, Geophys. Res. Letts., 26(21), 3297–3300, 1999.CrossRefGoogle Scholar
  8. Hocking, W. K., T. Thayaparan, and J. Jones, Meteor decay times and their use in determining a diagnostic mesospheric temperature-pressure parameter: methodology and one year of data, Geophys. Res. Letts., 24(23), 2977–2980, 1997.CrossRefGoogle Scholar
  9. Jones, W., The decay of radar echoes from meteors with particular reference to their use in the determination of temperature fluctuations near the mesopause, Ann. Geophysicae, 13, 1104–1106, 1995.CrossRefGoogle Scholar
  10. Makhlouf, U. B., R. H. Picard, and J. R. Winick, Photochemical-dynamical modeling of the measured response of airglow to gravity waves, J. Geo-phys. Res., 100(D6), 11289–11311, 1995.CrossRefGoogle Scholar
  11. Makhlouf, U. B., R. H. Picard, J. R. Winick, and T. F. Tuan, A model for the response of the atomic oxygen 557.7 nm and the OH Meinel airglow to atmospheric gravity waves in a realistic atmosphere, J. Geophys. Res., 103(D6), 6261–6269, 1998.CrossRefGoogle Scholar
  12. Meinel, A. B., OH emission bands in the spectrum of the night sky. I, Trans. Amer. Geophys. Union, 31, 21, 1950.CrossRefGoogle Scholar
  13. Nakamura, T., T. Tsuda, M. Tsutsumi, K. Kita, T. Uehara, S. Kato, and S. Fukao, Meteor wind observations with the MU radar, Radio Sci., 26(4), 857–869, 1991.CrossRefGoogle Scholar
  14. Nakamura, T., T. Tsuda, S. Fukao, H. Takahashi, and R. A. Buriti, P. P. Batista, M. Tsutsumi, M. Ishii, K. Igarashi, H. Fukunishi, Y. Yamada, A. Nomura, T. D. Kawahara, K. Kobayashi, C. Nagasawa, M. Abo, and M. J. Taylor, Studies of the MLT regions using the MU radar and simultaneous observations with OH spectrometer and other optical instruments, Adv. Space Res., 19, 643–652, 1997.CrossRefGoogle Scholar
  15. Shiokawa, K., Y. Katoh, M. Satoh, M. K. Ejiri, T. Ogawa, T. Nakamura, T. Tsuda, and R. H. Wiens, Development of optical mesosphere thermosphere imagers (OMTI), Earth Planets Space, 51, 887–896, 1999.CrossRefGoogle Scholar
  16. Takahashi, H., B. R. Clemesha, D. M. Simonich, S. M. L. Melo, N. R. Teixeira, A. Eras, J. Stegman, and G. Witt, Rocket measurements of the equatorial airglow: Multifot 92 data base, J. Atmos. Terr. Phys., 58(16), 1943–1961, 1996.CrossRefGoogle Scholar
  17. Takahashi, H., P. P. Batista, R. A. Buriti, D. Gobbi, T. Nakamura et al., Simultaneous measurements of airglow OH emission and meteor wind by a scanning photometer and the MU radar, J. Atmos. Solar Terr. Phys., 60, 1649–1668, 1998.CrossRefGoogle Scholar
  18. Takahashi, H., T. Nakamura, T. Tsuda, R. A. Buriti, and D. Gobbi, First measurement of atmospheric density and pressure by meteor diffusion coefficient and airglow OH temperature in the mesopause region, Geo-phys. Res. Letts., 29(8), 1165/GL014101, 2002.Google Scholar
  19. Tsutsumi, M., T. Tsuda, T. Nakamura, and S. Fukao, Temperature fluctuations near the mesopause inferred from meteor observations with the middle and upper atmosphere radar, Radio Sci., 29(3), 599–610, 1994.CrossRefGoogle Scholar
  20. Watanabe, T., M. Nakamura, and T. Ogawa, Rocket measurements of O2 atmospheric and OH Meinel bands in the airglow, J. Geophys. Res., 86, 5768–5774, 1981.CrossRefGoogle Scholar
  21. Wiens, R. H., S. P. Zhang, R. N. Peterson, and G. G. Shepherd, MORTI: A mesopause oxygen rotational temperature imager, Planet. Space Sci., 39, 1363–1375, 1991.CrossRefGoogle Scholar
  22. Wiens, R. H., A. Moise, S. Brown, S. Sargoytchev, R. N. Peterson, G. G. Shepherd, M. J. Lopez-Gonzalez, J. J. Lopez-Moreno, and R. Rodrigo, SATI: A spectral airglow temperature imager, Adv. Space Res., 19, 677–680, 1997.CrossRefGoogle Scholar
  23. Witt, G., J. Stegman, B. H. Solheim, and E. J. Llewellyn, A measurement of the O2(b) atmospheric band and the OI(1S) green line in the nightglow, Planet. Space Sci., 27, 341–350, 1979.CrossRefGoogle Scholar
  24. Witt, G., J. Stegman, D. O. Murtagh, I. C. McDade, R. G. H. Greer, P. H. G. Dickinson, and D. B. Jenkins, Collisional energy transfer and the excitation of O2(b) in the atmosphere, Journal of Photochemistry, 25, 365–378, 1984.CrossRefGoogle Scholar
  25. Yu, J. R. and C. Y. She, Climatology of a midlatitude mesopause region observed by a lidar at Fort Collins, Colorado (40.6N, 105W), J. Geophys. Res., 100(D4), 7441–7452, 1995.CrossRefGoogle Scholar
  26. Zhang, S. P. and G. G. Shepherd, The influence of the diurnal tide on the O(1S) and OH emission rates observed by WINDII on UARS, Geophys. Res. Lett., 26(4), 529–532, 1999.CrossRefGoogle Scholar
  27. Zhang, S. P., R. G. Roble, and G. G. Shepherd, Tidal influence on the oxygen and hydroxyl nightglows: Wind imaging interferometer observations and thermosphere/ionosphere/mesosphere electrodynamics general circulation model, J. Geophys. Res., 106(A10), 21381–21393, 2001.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2004

Authors and Affiliations

  • H. Takahashi
    • 1
  • T. Nakamura
    • 2
  • K. Shiokawa
    • 3
  • T. Tsuda
    • 2
  • L. M. Lima
    • 1
  • D. Gobbi
    • 1
  1. 1.Instituto Nacional de Pesquisas EspaciaisSão José dos CamposBrazil
  2. 2.Radio Science Center for Space and AtmosphereKyoto UniversityUji, KyotoJapan
  3. 3.Solar-Terrestrial Environment LaboratoryNagoya UniversityToyokawaJapan

Personalised recommendations