Advertisement

Earth, Planets and Space

, Volume 53, Issue 6, pp 619–625 | Cite as

Evidence for an extended reconnection line at the dayside magnetopause

  • T. D. Phan
  • M. P. Freeman
  • L. M. Kistler
  • B. Klecker
  • G. Haerendel
  • G. Paschmann
  • B. U. Ö. Sonnerup
  • W. Baumjohann
  • M. B. Bavassano-Cattaneo
  • C. W. Carlson
  • A. M. DiLellis
  • K. -H. Fornacon
  • L. A. Frank
  • M. Fujimoto
  • E. Georgescu
  • S. Kokubun
  • E. Moebius
  • T. Mukai
  • W. R. Paterson
  • H. Reme
Open Access
Article

Abstract

We report in-situ detection by two spacecraft of oppositely directed jets of plasma emanating from a magnetic reconnection site at the Earth’s dayside magnetopause, confirming a key element inherent in all reconnection scenarios. The dual-spacecraft (Equator-S and Geotail) observations at the flank magnetopause, together with SuperDARNHalley radar observations of the subsolar cusp region, reveal the presence of a rather stable and extended reconnection line which lies along the equatorial magnetopause. These observations were made under persistent southward interplanetary magnetic field (IMF) conditions, implying that under these conditions the reconnection sites are determined by the large-scale interactions between the solar wind magnetic field and the dayside magnetosphere, rather than by local conditions at the magnetopause. Control by local conditionswould result in patchy reconnection, distributed in a less well-organized fashion over the magnetopause surface.

Keywords

Solar Wind Interplanetary Magnetic Field Universal Time Reconnection Site Dayside Magnetopause 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Andre, R., M. Pinnock, and A. S. Rodger, On the SuperDARN autocorrelation function observed in the cusp, Geophys. Res. Lett., 26, 3353–3356, 1999.CrossRefGoogle Scholar
  2. Aubry, M. P., C. T. Russell, and M. G. Kivelson, Inward motion of the magnetopause before a substorm, J. Geophys. Res., 75, 7018–7031, 1970.CrossRefGoogle Scholar
  3. Axford, W. I. and C. O. Hines, A unifying theory of high-latitude geophysical phenomena and geomagnetic storms, Canadian Journal of Physics, 39, 1433–1464, 1961.CrossRefGoogle Scholar
  4. Baker, K. B., J. R. Dudeney, R. A. Greenwald, M. Pinnock, P. T. Newell, A. S. Rodger, N. Mattin, and C.-I. Meng, HF radar signatures of the cusp and low-latitude boundary layer, J. Geophys. Res., 100, 7671–7695, 1995.CrossRefGoogle Scholar
  5. Burke, W. J., D. R. Weimer, and N. C. Maynard, Geoeffective interplanetary scale sizes derived from regression analysis of polar cap potentials, J. Geophys. Res., 104, 9989–9994, 1999.CrossRefGoogle Scholar
  6. Crooker, N. U., Dayside merging and cusp geometry, J. Geophys. Res., 83, 951–959, 1979.CrossRefGoogle Scholar
  7. Dungey, J. W., Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47–48, 1961.CrossRefGoogle Scholar
  8. Fairfield, D. H., Average and unusual locations of the Earth’s magnetopause and bow shock, J. Geophys. Res., 76, 6700, 1971.CrossRefGoogle Scholar
  9. Fornacon, K.-H. et al., The magnetic field experiment onboard Equator-S and its scientific possibilities, Ann. Geophysicae., 17, 1521–1527, 1999.CrossRefGoogle Scholar
  10. Frank, L. A. et al., The comprehensive plasma instrumentation (CPI) for the Geotail spacecraft, J. Geomag. Geoelectr., 46, 23–37, 1994.CrossRefGoogle Scholar
  11. Giovanelli, R. G., A theory of chromospheric flares, Nature, 158, 81–82, 1946.CrossRefGoogle Scholar
  12. Gonzales, W. D. and F. S. Mozer, A quantitative model for the potential resulting from reconnection with an arbitrary interplanetary magnetic field, J. Geophys. Res., 79, 4186–4194, 1974.CrossRefGoogle Scholar
  13. Gosling, J. T. et al., Accelerated plasma flows at the near-tail magnetopause, J. Geophys. Res., 91, 3029–3041, 1986.CrossRefGoogle Scholar
  14. Greenwald, R. A., K. B. Baker, J. R. Dudeney, M. Pinnock, T. B. Jones, E. C. Thomas, J.-P. Villain, J.-C. Cerisier, C. Senior, C. Hanuise, R. D. Hunsucker, G. Sofko, J. Koehler, E. Nielsen, R. Pellinen, A. D. M. Walker, N. Sato, and H. Yamagishi, DARN/SuperDARN: A global view of the dynamics of high-latitude convection, Space Science Rev., 71, 761–796, 1995.CrossRefGoogle Scholar
  15. Hudson, P. D., Discontinuities in an anisotropic plasma and their identification in the solar wind, Planet. Space Sci., 18, 1611, 1970.CrossRefGoogle Scholar
  16. Innes, D. E. et al., Bi-directional plasma jets produced by magnetic reconnection on the Sun, Nature, 386, 811–813, 1997.CrossRefGoogle Scholar
  17. Kistler, L. M. et al, Testing Electric Field Models Using Ring Current Ion Energy Spectra from the Equator-S Ion Composition (ESIC) Experiment, Ann. Geophys., 12, 1611–1621, 1999.CrossRefGoogle Scholar
  18. Kokubun, S. et al, The GEOTAIL magnetic field experiment, J. Geomag. Geoelectr., 46, 7, 1994.CrossRefGoogle Scholar
  19. Levy, R. H., H. E. Petschek, and G. L. Siscoe, Aerodynamic aspects of the magnetospheric flow, AIAA J., 2, 2065, 1964.CrossRefGoogle Scholar
  20. Masuda, S., et al, A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection, Nature, 371, 495–497, 1994.CrossRefGoogle Scholar
  21. Mukai, S., et al., The Low Energy Particle (LEP) experiment onboard the GEOTAIL Satellite, J. Geomag. Geoelectr, 46, 669, 1994.Google Scholar
  22. Niedner, M. B., J. A. Ionson, and J. C. Brandt, Interplanetary Gas. XXVI. On the reconnection of magnetic fields in cometary ionospheres at interplanetary sector boundary crossings, Astrophys. J., 245, 1159–1169, 1981.CrossRefGoogle Scholar
  23. Paschmann, G., et al, Plasma acceleration at the earth’s magnetopause: Evidence for reconnection, Nature, 282, 243–246, 1979.CrossRefGoogle Scholar
  24. Paschmann, G., et al., The magnetopause for large magnetic shear: AMPTE/IRM observations, J. Geophys. Res., 91, 11099, 1986.Google Scholar
  25. Phan, T. D., et al., Extended magnetic reconnection at the Earth’s magnetopause from detection of bi-directional jets, Nature, 404, 848–850, 2000.CrossRefGoogle Scholar
  26. Siscoe, G. L. and T. S. Huang, Polar cap inflation and deflation, J. Geophys. Res., 90, 543, 1985.CrossRefGoogle Scholar
  27. Sonnerup, B. U. Ö., The magnetopause reconnection rate, J. Geophys. Res., 79, 1546–1549, 1974.CrossRefGoogle Scholar
  28. Sonnerup, B. U. Ö., et al, Evidence for reconnection at the earth’s magnetopause, J. Geophys. Res., 86, 10049–10067, 1981.CrossRefGoogle Scholar
  29. Yokoyama, T. and K. Shibata, Magnetic field reconnection as the origin of X-ray jets and H-Alpha surges on the sun, Nature, 375, 42, 1995.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2001

Authors and Affiliations

  • T. D. Phan
    • 1
  • M. P. Freeman
    • 2
  • L. M. Kistler
    • 3
  • B. Klecker
    • 4
  • G. Haerendel
    • 4
  • G. Paschmann
    • 4
  • B. U. Ö. Sonnerup
    • 5
  • W. Baumjohann
    • 4
  • M. B. Bavassano-Cattaneo
    • 6
  • C. W. Carlson
    • 1
  • A. M. DiLellis
    • 6
  • K. -H. Fornacon
    • 7
  • L. A. Frank
    • 8
  • M. Fujimoto
    • 9
  • E. Georgescu
    • 4
    • 10
  • S. Kokubun
    • 11
  • E. Moebius
    • 3
  • T. Mukai
    • 12
  • W. R. Paterson
    • 8
  • H. Reme
    • 13
  1. 1.Space Sciences LaboratoryUniversity of CaliforniaBerkeleyUSA
  2. 2.British Antarctic SurveyCambridgeUK
  3. 3.Space Science CenterUniversity of New HampshireUSA
  4. 4.Max-Planck-Institut für extraterrestrische PhysikGarchingGermany
  5. 5.Thayer School of EngineeringDartmouth CollegeHanoverUSA
  6. 6.IFSI-CNRRomaItaly
  7. 7.Technische Universität BraunschweigBraunschweigGermany
  8. 8.Department of Physics and AstronomyUniversity of IowaIowa CityUSA
  9. 9.Department of Earth and Planetary SciencesTokyo Institute of TechnologyMeguroJapan
  10. 10.Institute of Space SciencesBucharestRomania
  11. 11.Solar-Terrestrial Environment LaboratoryNagoya UniversityAichiJapan
  12. 12.The Institute of Space and Astronautical ScienceSagamihara, KanagawaJapan
  13. 13.Centre d’Etude Spatiale des RayonnementsUniversité Paul SabatierToulouseFrance

Personalised recommendations