Earth, Planets and Space

, Volume 53, Issue 6, pp 495–499 | Cite as

Spheromaks, solar prominences, and Alfvén instability of current sheets

Open Access


Three related efforts underway at Caltech are discussed: experimental studies of spheromak formation, experimental simulation of solar prominences, and Alfvén wave instability of current sheets. Spheromak formation has been studied by using a coaxial magnetized plasma gun to inject helicity-bearing plasma into a very large vacuum chamber. The spheromak is formed without a flux conserver and internal λ profiles have been measured. Spheromak-based technology has been used to make laboratory plasmas having the topology and dynamics of solar prominences. The physics of these structures is closely related to spheromaks (low β, force-free, relaxed state equilibrium) but the boundary conditions and symmetry are different. Like spheromaks, the equilibrium involves a balance between hoop forces, pinch forces, and magnetic tension. It is shown theoretically that if a current sheet becomes sufficiently thin (of the order of the ion skin depth or smaller), it becomes kinetically unstable with respect to the emission of Alfvén waves and it is proposed that this wave emission is an important aspect of the dynamics of collisionless reconnection.


Current Sheet Magnetic Reconnection Magnetic Helicity High Speed Solar Wind Solar Prominence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arzimovich, L. A., Elementary Plasma Physics, 188 pp., Blaisdell Publishing, New York, 1965.Google Scholar
  2. Axford, W. I. and J. F. McKenzie, The origin of high speed solar wind streams, in Solar Wind Seven, COSPAR Colloquia Series, Vol. 3, edited by E. Marsch and R. Schwenn, 711 pp., Pergamon Press, 1992.Google Scholar
  3. Bateman, G., MHD Instabilities, 263 pp., MIT Press, Boston, 1978.Google Scholar
  4. Bellan, P. M., New model for ULF Pc5 pulsations: Alfven cones, Geophys. Res. Lett., 23, 1717–1720, 1996.CrossRefGoogle Scholar
  5. Bellan, P. M., Collisionless reconnection using Alfven wave radiation resistance, Phys. Plasmas, 5, 3081–3088, 1998.CrossRefGoogle Scholar
  6. Bellan, P. M., Alfven wave instability of current sheets in force-free collisionless plasmas, Phys. Rev. Lett., 83, 4768–4771, 1999.CrossRefGoogle Scholar
  7. Bellan, P. M., Spheromaks, 341 pp., Imperial College Press, London, 2000.CrossRefGoogle Scholar
  8. Bellan, P. M., Alfven wave instability of current sheets in force-free plasmas: Comparison to ion acoustic instability, Advances in Space Research (in press).Google Scholar
  9. Bellan, P. M. and J. F. Hansen, Laboratory simulations of solar prominence eruptions, Phys. Plasmas, 5(2), 1991–2000, 1998.CrossRefGoogle Scholar
  10. Bhattacharjee, A., Z. W. Ma, and X. G. Wang, Impulsive reconnection dynamics in collisionless laboratory and space plasmas, J. Geophys. Res., 104, 14543–14556, 1999.CrossRefGoogle Scholar
  11. Biskamp, D., Nonlinear Magnetohyrodynamics, 378 pp., Cambridge University Press, 1993.CrossRefGoogle Scholar
  12. Chen, J., Effects of toroidal forces in current loops embedded in a background plasma, Astrophys. J., 338, 453–470, 1989.CrossRefGoogle Scholar
  13. Drake, J. F., R. G. Kleva, and M. E. Mandt, Structure of thin current layers—implications for magnetic reconnection, Phys. Rev. Lett., 73, 1251–1254, 1994.CrossRefGoogle Scholar
  14. Fernandez, J. C., B. L. Wright, G. J. Marklin, D. A. Platts, and T. R. Jarboe, The m = 1 helicity source spheromak experiment, Phys. Fluids B, 1, 1254–1270, 1989.CrossRefGoogle Scholar
  15. Freidberg, J. P., Ideal Magnetohydrodynamics, 489 pp., Plenum Press, New York, 1987.CrossRefGoogle Scholar
  16. Furth, H. P., Compact Tori, Nucl. Instrum. Methods, 207, 93–110, 1983.CrossRefGoogle Scholar
  17. Furth, H. P., J. Killeen, and M. N. Rosenbluth, Finite-resistivity instabilities of a sheet pinch, Phys. Fluids, 6, 459–484, 1963.CrossRefGoogle Scholar
  18. Gekelman, W. and R. L. Stenzel, Magnetic-field line reconnection experiments. 6. Magnetic turbulence, J. Geophys. Res., 89, 2715–2733, 1984.CrossRefGoogle Scholar
  19. Goldston, R. J. and P. H. Rutherford, Introduction to Plasma Physics, 491 pp., Institute of Physics Publishing, Bristol, 1995.CrossRefGoogle Scholar
  20. Hansen, J. F. and P. M. Bellan, Experimental demonstration of how strapping fields can inhibit solar prominence eruptions, Astrophys. J. Lett. (submitted).Google Scholar
  21. Jarboe, T. R., Review of spheromak research, Plasma Phys. Controlled Fusion, 36, 945–990, 1994.CrossRefGoogle Scholar
  22. Jarboe, T. R., C. W. Barnes, D. A. Platts, and B. L. Wright, A kinked Z-pinch as the helicity source for spheromak generation and sustainment, Comments Plasma Phys. Controlled Fusion, 9, 161–168, 1985.Google Scholar
  23. Jensen, T. H. and M. S. Chu, Current drive and helicity injection, Phys. Fluids, 27, 2881–2885, 1984.CrossRefGoogle Scholar
  24. Krall, J., J. Chen, and R. Santoro, Drive mechanisms of erupting solar magnetic flux ropes, Astrophys. J., 539(1), 964–982, 2000.CrossRefGoogle Scholar
  25. Longbottom, A. W., G. J. Rickard, I. J. D. Craig, and A. D. Sneyd, Magnetic flux braiding: Force-free equilibria and current sheets, Astrophys. J., 500, 471–482, 1998.CrossRefGoogle Scholar
  26. Lundquist, S., Magneto-hydrostatic fields, Arkiv for Fysik, B2, 361–365, 1950.Google Scholar
  27. Mayo, R. M., J. C. Fernandez, I. Henins, L. S. Kirschenbaum, C. P. Munson, and F. J. Wysocki, Time of flight measurement of ion temperatures in spheromaks, Nucl. Fusion, 31, 2087–2095, 1991.CrossRefGoogle Scholar
  28. Miyamoto, K., Plasma Physics for Nuclear Fusion, 618 pp., revised English edition, MIT Press, Boston, 1989.Google Scholar
  29. Ono, Y., M. Yamada, T. Akao, T. Tajima, and R. Matsumoto, Ion acceleration and direct ion heating in three-component magnetic reconnection, Phys. Rev. Lett., 76, 3328–3331, 1996.CrossRefGoogle Scholar
  30. Parker, E. N., Magnetic neutral sheets in evolving fields. 1. General theory, Astrophys. J., 264, 635–641, 1983.CrossRefGoogle Scholar
  31. Stasiewicz, K., P. Bellan, C. Chaston, C. Kletzing, R. Lysak, J. Maggs, O. Pokhotelov, C. Seyler, P. Shukla, L. Stenflo, A. Streltsov, and J.-E. Wahlund, Small scale Alfvenic structure in the aurora, Space Sci. Reviews, 92, 423–533, 2000.CrossRefGoogle Scholar
  32. Tandberg-Hanssen, E., The Nature of Solar Prominences, 308 pp., Kluwer, Dordrecht, 1995.CrossRefGoogle Scholar
  33. Taylor, J. B., Relaxation of toroidal plasma and generation of reverse magnetic fields, Phys. Rev. Lett., 33, 1139–1141, 1974.CrossRefGoogle Scholar
  34. Turner, W. C., G. C. Goldenbaum, E. H. A. Granneman, J. H. Hammer, C. W. Hartman, D. S. Prono, and J. Taska, Investigations of the magnetic structure and decay of a plasma-gun-generated compact torus, Phys. Fluids, 26, 1965–1986, 1983.CrossRefGoogle Scholar
  35. Yamada, M., H. T. Ji, S. Hsu, T. Carter, R. Kulsrud, and F. Trintchouk, Experimental investigation of the neutral sheet profile during magnetic reconnection, Phys. Plasmas, 7(2), 1781–1787, 2000.CrossRefGoogle Scholar
  36. Yee, J. and P. M. Bellan, Taylor relaxation and lambda decay of unbounded, freely expanding spheromaks, Phys. Plasmas, 7, 3625–3640, 2000.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2001

Authors and Affiliations

  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations