Earth, Planets and Space

, Volume 51, Issue 7–8, pp 855–861 | Cite as

The influence of photochemistry on gravity waves in the middle atmosphere

  • Jiyao Xu
Open Access


This paper focuses on the effect of diabatic processes due to photochemical heating on long-period gravity waves in the stratosphere, mesosphere and lower thermosphere. A linear diabatic gravity wave model is established and compared to a model of pure dynamical adiabatic gravity waves. The results indicate that the photochemistry has a damping effect on gravity waves in most regions of the stratosphere and mesosphere. However, the photochemistry has a destabilizing effect on gravity waves in the mesopause region. The photochemical heating process can induce a comparatively strong enhancement of gravity waves at the mesopause for lower temperatures. In the summer polar mesopause region, this growth rate may be greater by about one order of magnitude than the growth rate of gravity waves at other seasons and locations.


Gravity Wave Middle Atmosphere Lower Thermosphere Atmospheric Density Vertical Wavelength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allen, M., A new source of ozone in the terrestrial upper atmosphere?, J. Geophys. Res., 91, 2844–2848, 1986.CrossRefGoogle Scholar
  2. Allen, M. and M. L. Delitsky, A test of odd oxygen photochemistry using Spacelab 3 atmospheric trace molecule spectroscopy observations, J. Geophys. Res., 96, 12883–12891, 1991.CrossRefGoogle Scholar
  3. Allen, M., J. I. Lunine, and Y. I. Yung, The vertical distribution of ozone in the mesosphere and lower thermosphere, J. Geophys. Res., 89(D3), 4841–4872, 1984.CrossRefGoogle Scholar
  4. Balsley, B. B., W. L. Ecklund, and D. C. Fritts, VHF echoes from the high-latitude mesosphere and lower thermosphere: observations and interpretations, J. Atmos. Sci., 40, 2451–2466, 1983.CrossRefGoogle Scholar
  5. Brasseur, G. and D. Offermann, Recombination of atomic oxygen near the mesopause: interpretation of rocket data, J. Geophys. Res., 91, 10818–10824, 1986.CrossRefGoogle Scholar
  6. Clancy, R. T., D. W. Rusch, R. J. Thomas, M. Allen, and R. S. Eckman, Model ozone photochemistry on the basis of solar mesosphere explorer mesospheric observations, J. Geophys. Res., 92, 3067–3080, 1987.CrossRefGoogle Scholar
  7. DeMore, W. B., C. J. Howard, S. P. Sander, A. R. Ravishankara, D. M. Golden, C. E. Kolb, R. F. Hampson, M. J. Molina, and M. J. Kurylo, Chemical kinetics and photochemical data for use in stratospheric modeling, Eval. 10, JPL Publ. 92-20, Jet Propul. Lab., Calif. Inst. of Tech., Pasadena, Calif., 1992.Google Scholar
  8. Dickinson, R. E., A method of parameterization of infrared cooling between altitudes of 30 km and 70 km, J. Atmos. Sci., 78, 4451–4457, 1973.Google Scholar
  9. Fomichev, V. I., W. E. Ward, and C. McLandress, Implications of variations in the 15 μm CO2 band cooling in the mesosphere and lower thermosphere associated with current climatologies of the atomic oxygen mixing ratio, J. Geophys. Res., 101(D2), 4041–4055, 1996.CrossRefGoogle Scholar
  10. Fritts, D. C., Gravit wave saturation in the middle atmosphere: a review of theory and observations, Reviews of Geophys. and Space Physics, 22, 275–308, 1984.CrossRefGoogle Scholar
  11. Fritts, D. C., S. A. Smith B. B. Balsley, and C. R. Philbrick, Evidence of gravity wave saturation and local turbulence production in the summer mesosphere and lower thermosphere during the STATE experiment, J. Geophys. Res., 93, 7015–7025, 1988.CrossRefGoogle Scholar
  12. Garcia, R. R. and S. Solomon, The effect of breaking gravity waves on the dynamical and chemical composition of the mesosphere and lower thermosphere, J. Geophys. Res., 90, 3850–3868, 1985.CrossRefGoogle Scholar
  13. Harris, R. D. and G. W. Adams, Where does the O(1D) energy go?, J. Geophys. Res., 88, 4918–4928, 1983.CrossRefGoogle Scholar
  14. Holton, J. R., An Introduction to Dynamic Meteorology, Chapter 9, pp. 161–183, Academic Press, Inc., 1972.Google Scholar
  15. Leovy, C. B., Photochemical destabilization of gravity wave near the mesopause, J. Atmos. Sci., 23, 223–232, 1966.CrossRefGoogle Scholar
  16. Lindzen, R. S., Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707–9714, 1981.CrossRefGoogle Scholar
  17. Llewellyn, E. J. and I. C. McDade, A reference model for atomic oxygen in the terrestrial atmosphere, Adv. Space Res., 18(9/10), 209–226, 1996.CrossRefGoogle Scholar
  18. Lübken, F.-J., U. von Zahn, A. Manson, C. Meek, U.-P. Hoppe, F. J. Schmidlin, J. Stegmen, D. P. Murtagh, R. Ruster, G. Schmidt, H.-U. Widdel, and P. Espy, Mean state densities, temperatures and winds during the MAC.SINE and MAC/EPSILON campaigns, J. Atmos. Terr. Phys., 52(10/11), 955–970, 1990.CrossRefGoogle Scholar
  19. Lübken, F.-J., Seasonal variation of turbulent energy dissipation rates at high latitudes as determined by in situ measurements of neutral density fluctuations, J. Geophys. Res., 102(D12), 13441–13456, 1997.CrossRefGoogle Scholar
  20. McDade, I. C. and E. J. Llewellyn, An assessment of the H + O3 heating efficiencies in the night-time mesopause region, Ann. Geophysicae, 11, 47–51, 1993.Google Scholar
  21. Meriwether, J. W. and M. G. Mlynczak, Is chemical heating a major cause of the mesosphere inversion layer?, J. Geophys. Res., 100(D1), 1379–1387, 1995.CrossRefGoogle Scholar
  22. Mlynczak, M. G. and S. Solomon, A detail evaluation of the heating efficiencyinthe middle atmosphere, J. Geophys. Res., 98(D6), 10517–10541, 1993.CrossRefGoogle Scholar
  23. Reid, I. M., R. Ruster, P. Czechowsky, and G. Schmidt, VHF radar measurements of momentum flux in the summer polar mesosphere over Andenes (69°N, 16°E), Norway, Geophys. Res. Lett., 15, 1263–1266, 1988.CrossRefGoogle Scholar
  24. Riese, M., D. Offermann, and G. Brasseur, Energy released by recombination of atomic oxygen and related species at mesospause heights, J. Geophys. Res., 99, 14585–14594, 1994.CrossRefGoogle Scholar
  25. Schmidlin, F. J., First observation of mesopause temperature lower than 100 K, Geophys. Res. Lett., 19, 1643, 1992.CrossRefGoogle Scholar
  26. Strobel, D. F., M. E. Summers, R. M. Bevilacqua, M. T. Deland, and M. Allen, Vertical constituent transport in the mesosphere, J. Geophys. Res., 92, 6691–6698, 1987.CrossRefGoogle Scholar
  27. Thomas, R. J., C. A. Barth, G. J. Rottman, D. W. Rusch, G. H. Mount, G. M. Lawrence, R. W. Sanders, G. E. Thomas, and L. E. Clements, ozone density inthe mesosphere (50–90 km) measured by the SME near infrared spectrometer, Geophys. Res. Lett., 10, 245–248, 1983.CrossRefGoogle Scholar
  28. VanZandt, T. E. and D. C. Fritts, A theory of enhanced saturation of the gravity wave spectrum due to increases in atmospheric stability, Pure Appl. Geophys., 130, 399–420, 1989.CrossRefGoogle Scholar
  29. Von Zahn, U. and W. Meyer, Mesopause temperature in polar summer, J. Geophys. Res., 94(D12), 14647–14651, 1989.CrossRefGoogle Scholar
  30. Xun Zhu and J. R. Holton, Photochemical damping of inertio-gravity waves, J. Atmos. Sci., 43, 2578–2584, 1986.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 1999

Authors and Affiliations

  1. 1.Laboratory of Numeric Study of Heliospheric Physics, Center for Space Science and Applied ResearchThe Chinese Academy of SciencesBeijingChina

Personalised recommendations