Advertisement

Earth, Planets and Space

, Volume 61, Issue 7, pp 933–938 | Cite as

Gravity structure of Akan composite caldera, eastern Hokkaido, Japan: Application of lake water corrections

  • Takeshi Hasegawa
  • Akihiko Yamamoto
  • Hiroyuki Kamiyama
  • Mitsuhiro Nakagawa
Open Access
Letter

Abstract

Akan volcano, eastern Hokkaido, Japan, is characterized by a rectangular-shaped caldera (Akan caldera: 24 km by 13 km) with a complex history of caldera-forming eruptions during the Quaternary. A new Bouguer anomaly map of the caldera is presented on the basis of a gravity survey around Akan volcano. As part of and in addition to this survey, we applied gravimetry over the frozen caldera lake including lake water corrections. The Bouguer map shows the distribution of at least three sub-circular minima indicative of multiple depressions inside the caldera. Lake water corrections, performed by a numerical integration method using rectangular prisms, sharpen edges of the sub-circular minima. This gravity feature is consistent with geological investigations suggesting that caldera-forming eruptions of Akan volcano occurred from at least three different sources. It is concluded that Akan caldera can be described as a composite caldera with three major depressed segments.

Key words

Gravity anomaly Akan volcano composite caldera lake water correction 

References

  1. Cole, J. W., S. J. A. Brown, R. M. Burt, S. W. Beresford, and C. J. N. Wilson, Lithic types in ignimbrites as a guide to the evolution of a caldera complex, Taupo volcanic centre, New Zealand, J. Volcanol. Geotherm. Res., 80, 217–237, 1998.CrossRefGoogle Scholar
  2. Cole, J.W., D.M. Milner, and K. D. Spinks, calderas and caldera structure: a review, J. Volcanol. Geotherm. Res., 69, 1–26, 2005.Google Scholar
  3. Davy, B. W. and T. G. Caldwell, Gravity, magnetic and seismic surveys of the caldera complex, Lake Taupo, North Island, New Zealand, J. Volcanol. Geotherm. Res., 81, 69–89, 1998.CrossRefGoogle Scholar
  4. Fournier, N., H. Rymer, G. Williams-Jones, and J. Brenes, Highresolution gravity survey: investigation of subsurface structures at Poás volcando, Costa Rica, Geophys. Res. Lett., 31, L15602, doi:10.1029/2004GL020563, 2004.CrossRefGoogle Scholar
  5. Froger, J.-L., J.-F. Lénat, J. Chorowicz, J.-L. Le Pennec, J.-L. Bourdier, O. Köse, O. Zimitoglu, N. M. Gündogdu, and A. Gourgaud, Hidden calderas evidenced by multisource geophysical data; example of Cappadocian Calderas, Central Anatolia, J. Volcanol. Geotherm. Res., 185, 99–128, 1998.CrossRefGoogle Scholar
  6. Goto, Y., A. Funayama, N. Gouchi, and T. Itaya, K-Ar ages of the Akan-Shiretoko volcanic chain lying oblique to the Kurile trench: Implications for the tectonic control of volcanism, Island Arc, 9, 204–218, 2000.CrossRefGoogle Scholar
  7. GSJ (Geological Survey of Japan), Gravity CD-ROM of Japan (CD-ROM), Digital Geoscience Map Series P-2, Geol. Surv. Jpn., Tsukuba, Ibaraki., 2000.Google Scholar
  8. GSJ (Geological Survey of Japan), Gravity CD-ROM of Japan (ver. 2) (CD-ROM), Digital Geoscience Map Series P-2, Geol. Surv. Jpn., Tsukuba, Ibaraki, 2004.Google Scholar
  9. Gudmundsson, M. T. and Th. Högnadóttir, Volcanic systems and calderas in the Vatnajökull region, central Iceland: Constraints on crustal structure from gravity data, J. Geodyn., 43, 153–169, 2007.CrossRefGoogle Scholar
  10. Hasegawa, T. and M. Nakagawa, Stratigraphy of Early to Middle Pleistocene pyroclastic deposits around Akan caldera, eastern Hokkaido, Japan, J. Geol. Soc. Jpn., 113, 53–72, 2007 (in Japanese with English abstract).CrossRefGoogle Scholar
  11. Hasegawa, T., E. Ishii, and M. Nakagawa, Evolution of Akan Caldera, East Hokkaido, indicated by analysis of lithic fragments in pumice fall deposits, The Earth (Chikyu) Monthly, 28, 283–289, 2006 (in Japanese).Google Scholar
  12. Komazawa, M., Gravimetric analysis of Aso Volcano and its interpretation, J. Geod. Soc. Jpn., 41, 17–45, 1995.Google Scholar
  13. Lipman, P. W., Subsidence of ash-flow calderas: relation to. caldera size and chamber geometry, Bull. Volcanol., 59, 198–218, 1997.CrossRefGoogle Scholar
  14. Lipman, P. W., Calderas, in Encyclopedia of Volcanoes, edited by H. Sigurdsson et al., 643–662, Academic Press, San Diego, 2000.Google Scholar
  15. NEDO (New Energy and Industrial Technology Development Organization), Akan area, Report of Geothermal development promotion survey, 26, 1133 pp., New Energy and Indus. Technol. Dev. Org., Kawasaki, Kanagawa, 1992 (in Japanese).Google Scholar
  16. Ohkawa, S. and I. Yokoyama, Subsurface structure of Akan caldera based on gravity anomalies, Geophys. Bull. Hokkaido Univ., 38, 17–29, 1979 (in Japanese with English Abstract).Google Scholar
  17. Reubi, O. and I. A. Nicholls, Structure and dynamics of a silicic magmatic system associated with caldera-forming eruptions at Batur Volcanic Field, Bali, Indonesia, J. Petrol., 46, 1367–1391, 2005.CrossRefGoogle Scholar
  18. Rymer, H. and G. C. Brown, Gravity fields and the interpretation of volcanic structures: geological discrimination and temporal evolution, J. Volcanol. Geotherm. Res., 27, 229–254, 1986.CrossRefGoogle Scholar
  19. Smith, V. C., P. Shane, and I. A. Nairn, Trends in rhyolite geochemistry, mineralogy and magma storage during the last 50 kyr at Okataina and Taupo volcanic center, Taupo Volcanic Zone, New Zealand, J. Volcanol. Geotherm. Res., 148, 372–406, 2005.CrossRefGoogle Scholar
  20. Suzuki-Kamata, K., H. Kamata, and C. R. Bacon, Evolution of the calderaforming eruption at Crater Lake, Oregon, indicated by component analysis of lithic fragments, J. Geophys. Res., 98(B8), 14059–14074, 1993.CrossRefGoogle Scholar
  21. Wessel, P. and W. H. F. Smith, New version of the generic mapping tools released, EOS Trans. AGU, 76, 329, Suppl., Aug. 15, 1995.CrossRefGoogle Scholar
  22. Williams, H. and A. R. McBirney, Calderas and cauldrons, in Volcanology, 207–238, Freeman, Cooper and Co., San Francisco, 1979.Google Scholar
  23. Wilson, C. J. N., Stratigraphy, chronology, styles and dynamics of late Quaternary eruptions from Taupo volcano, New Zealand, Phil. Trans. R. Soc. London, A343, 205–306, 1993.CrossRefGoogle Scholar
  24. Yamamoto, A., Spherical terrain corrections for gravity anomaly using a digital elevation model gridded with nodes at every 50 m, J. Fac. Sci. Hokkaido Univ., 11, 845–880, http://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/8866/1/11%286%29%20p845-880.pdf/dspace/bitstream/2115/8866/1/11%286%29 p845-880.pdf, 2002.Google Scholar
  25. Yokoyama, I., Volcanic calderas and Meteorite craters with the special relation to their gravity anomalies, J. Fac. Sci. Hokkaido Univ., 2, 37–47, 1963.Google Scholar
  26. Yokoyama, I. and S. Ohkawa, The subsurface structure of the Aira Caldera and its vicinity in southern Kyushu, Japan, J. Volcanol. Geotherm. Res., 30, 253–282, 1986.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB. 2009

Authors and Affiliations

  • Takeshi Hasegawa
    • 1
  • Akihiko Yamamoto
    • 2
  • Hiroyuki Kamiyama
    • 3
  • Mitsuhiro Nakagawa
    • 1
  1. 1.Department of Natural History Sciences, Graduate School of ScienceHokkaido UniversitySapporoJapan
  2. 2.Department of Earth Sciences, Graduate School of Science and EngineeringEhime UniversityMatsuyamaJapan
  3. 3.Institute of Seismology and Volcanology, Graduate School of ScienceHokkaido UniversitySapporoJapan

Personalised recommendations