Advertisement

Earth, Planets and Space

, Volume 61, Issue 4, pp 471–478 | Cite as

Gravity waves in the equatorial thermosphere and their relation to lower atmospheric variability

Open Access
Article

Abstract

Using a general circulation model that contains the region from the ground surface to the upper thermosphere, we have examined characteristics of gravity waves in the equatorial thermosphere. At an altitude of 150 km, the dominant periods of gravity waves for zonal wave number 20 (zonal wavelength λ x ≈ 2000 km), 40 (λ x ≈ 1000 km) and 80 (λ x ≈ 500 km) are 3, 1.5 and 1 h, respectively. For individual zonal wave numbers, the corresponding dominant period becomes shorter at higher altitudes due to dissipation processes in the thermosphere, such as molecular viscosity and ion drag force, indicating that gravity waves with a larger horizontal phase velocity (larger vertical wavelength) can penetrate into the thermosphere. The longitudinal variation of gravity wave activity in the equatorial thermosphere and upward propagation of gravity waves from the lower atmosphere were also studied. The longitudinal distribution of gravity wave activity in the thermosphere is quite similar to that of gravity wave activity in the lower atmosphere and the cumulus convective activity in the tropical troposphere. Our results indicate that the strong energy flux due to gravity waves from the enhanced cumulus convective activity propagates upward into the upper thermosphere. The relation between the wind fluctuation associated with gravity waves and the ionospheric variation is discussed. Fluctuations of the neutral zonal wind with periods of 1–2 h are significant in the 200- to 300-km height region, and its amplitude sometimes exceeds 50 m s−1. These results suggest that upward propagating gravity waves can affect the ionospheric variation in the F-region.

Key words

Gravity waves equatorial thermosphere upward propagation wind fluctuation ionospheric variation 

References

  1. Chiu, Y. T., An improved phenomenological model of ionospheric density, J. Atmos. Terr. Phys., 37, 1563–1570, 1975.CrossRefGoogle Scholar
  2. Djuth, F. T., M. P. Sulzer, S. A. Gonzales, J. D. Mathews, J. H. Elder, and R. L. Walterscheid, A continuum of gravity waves in the Arecibo thermosphere?, Geophys. Res. Lett., 31, L16801, doi:10.1029/2003GL019376, 2004.CrossRefGoogle Scholar
  3. Fuller-Rowell, T. J. and D. S. Evans, Height-integrated Pedersen and Hall conductivity patterns inferred from the TIROS-NOAA satellite data, J. Geophys. Res., 92, 7606–7618, 1987.CrossRefGoogle Scholar
  4. Hayashi, Y., A generalized method of resolving disturbances into progressive and retrogressive waves by space Fourier and time cross-spectral analyses, J. Meteor. Soc. Jpn., 49, 125–128, 1971.Google Scholar
  5. Hayashi, Y., D. G. Golder, J. D. Mahlman, and S. Miyahara, The effect of horizontal resolution on gravity waves simulated by the GFDL SKYHI general circulation model, PAGEOPH, 130, 421–443, 1989.CrossRefGoogle Scholar
  6. Hayashi, Y., D. G. Gloder, and P. W. Jones, Tropical gravity waves and super clusters simulated by high-horizontal resolution SKYHI general circulation model, J. Meteor. Soc. Jpn., 75, 1125–1139, 1997.Google Scholar
  7. Hocke, K. and K. Schlegel, A review of atmospheric gravity waves and traveling ionospheric disturbances: 1982–1995, Ann. Geophys., 14, 917–940, 1996.Google Scholar
  8. Hocke, K. and T. Tsuda, Gravity waves and ionospheric irregularities over tropical convection zones observed by GPS/MET radio occultation, Geophys. Res. Lett., 28, 2815–2818, 2001.CrossRefGoogle Scholar
  9. Horinouchi, T., T. Nakamura, and J. Kosaka, Convectively generated mesoscale gravity waves simulated throughout the middle atmosphere, Geophys. Res. Lett., 29(21), 2007, doi:10.1029/2002GL016069, 2002.Google Scholar
  10. Horinouchi, T., S. Pawson, K. Shibata, U. Langematz, E. Manzin, M. A. Giorgetta, F. Sassi, R. J. Wilson, K. Hamilton, J. Grandpre, and A. A. Scaife, Tropical cumulus convection and upward-propagating waves in middle-atmosphere GCMs, J. Atmos. Sci., 60, 2765–2782, 2003.CrossRefGoogle Scholar
  11. Jones, P. W., K. Hamilton, and R. J. Wilson, A very high resolution general circulation model simulation of the global circulation in austral winter, J. Atmos. Sci., 54, 1107–1116, 1997.CrossRefGoogle Scholar
  12. Kelly, M. C., M. F. Larsen, C. M. Swenson, and T. F. Wheeler, Gravity wave initiation of equatorial spread F: A case study, J. Geophys. Res., 86, 9087–9100, 1981.CrossRefGoogle Scholar
  13. Lin, C. S., T. J. Immel, H. C. Yeh, S. B. Mende, and J. L. Burch, Simultaneous observations of equatorial plasma depletion by IMAGE and ROCSAT-1 satellites, J. Geophys. Res., 110, A06304, doi:10. 1029/2004JA010774, 2005.Google Scholar
  14. Lindzen, R. S., Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707–9714, 1981.CrossRefGoogle Scholar
  15. Matsuno, T., A quasi one-dimensional model of the middle atmosphere circulation interacting with internal gravity waves, J. Meteor. Soc. Jpn., 60, 215–226, 1982.Google Scholar
  16. McFarlane, N. A., The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere, J. Atmos. Sci., 44, 1775–1800, 1987.CrossRefGoogle Scholar
  17. Miyahara, S., Y. Yoshida, and Y. Miyoshi, Dynamic coupling between the lower and upper atmosphere by tides and gravity waves, J. Atmos. Terr. Phys., 55, 1039–1053, 1993.CrossRefGoogle Scholar
  18. Miyoshi, Y., Numerical simulation of the 5-day and 16-day waves in the mesopause region, Earth Planets Space, 51, 763–772, 1999.CrossRefGoogle Scholar
  19. Miyoshi, Y., Temporal variation of nonmigrating diurnal tide and its relation with the moist convective activity, Geophys. Res. Lett., 33, L11815, doi:10.1029/2006GL026072, 2006.CrossRefGoogle Scholar
  20. Miyoshi, Y. and H. Fujiwara, Day-to-day variations of migrating diurnal tide simulated by a GCM from the ground surface to the exobase, Geophys. Res. Lett., 30, 1789, doi:10.1029/2003GL017695, 2003.CrossRefGoogle Scholar
  21. Miyoshi, Y. and H. Fujiwara, Excitation mechanism of intraseasonal oscillation in the equatorial mesosphere and lower thermosphere, J. Geophys. Res., 111, D14108, doi:10.1029/2005JD006993, 2006.CrossRefGoogle Scholar
  22. Miyoshi, Y. and H. Fujiwara, Gravity waves in the thermosphere simulated by a general circulation model, J. Geophys. Res., 113, D01101, doi:10.1029/2007JD008874, 2008.Google Scholar
  23. Ogawa, T., E. Sagawa, Y. Otsuka, K. Shiokawa, T. J. Immel, S. B. Mende, and P. Wilkinson, Simultaneous ground- and satellite-based airglow observations of geomagnetic conjugate plasma bubbles in the equatorial anomaly, Earth Planets Space, 57, 385–392, 2005.CrossRefGoogle Scholar
  24. Oliver, W. L., Y. Otsuka, M. Sato, T. Takami, and S. Fukao, A climatology of F region gravity waves propagation over the middle and upper atmosphere radar, J. Geophys. Res., 102, 14499–14512, 1997.CrossRefGoogle Scholar
  25. Reid, I. M. and R. A. Vincent, Measurements of mesospheric gravity wave momentum fluxes and mean flow accelerations at Adelaide, Australia, J. Atmos. Terr. Phys., 49, 443–460, 1987.CrossRefGoogle Scholar
  26. Sato, K., T. Kumakura, and M. Takahashi, Gravity waves appearing in a high-resolution GCM simulation, J. Atmos. Sci., 56, 1005–1018, 1999.CrossRefGoogle Scholar
  27. Singh, S., F. S. Johnson, and R. A. Power, Gravity wave seeding of equatorial plasama bubbles, J. Geophys. Res., 102, 7399–7410, 1997.CrossRefGoogle Scholar
  28. Tsuda, T. and K. Hocke, Application of GPS radio occultation data for studies of atmospheric waves in the middle atmosphere and ionosphere, J. Meteor. Soc. Jpn., 82, 419–426, 2004.CrossRefGoogle Scholar
  29. Tsuda, T., Y. Murayama, M. Yamamoto, S. Kato, and S. Fukao, Seasonal variation of momentum flux in the mesosphere observed with the MU radar, Geophys. Res. Lett., 17, 725–728, 1990.CrossRefGoogle Scholar
  30. Vadas, S. L., Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources, J. Geophys. Res., 112, A06305, doi:10.1029/20056JA011845, 2007.Google Scholar
  31. Vadas, S. L. and D. C. Fritts, Thermospheric responses to gravity waves arising from mesoscale convective complexes, J. Atmos. Sol.-Terr. Phys., 66, 781–804, 2004.CrossRefGoogle Scholar
  32. Vadas, S. L. and D. C. Fritts, Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity, J. Geophys. Res., 110, D15103, doi:10.1029/2004JD005574, 2005.CrossRefGoogle Scholar
  33. Vadas, S. L. and D. C. Fritts, Influences of solar variability on gravity wave structure and dissipation in the thermosphere from tropospheric convection, J. Geophys. Res., 111, A10S12, doi:10.1029/2005JA011510, 2006.Google Scholar
  34. Vincent, R. A. and D. C. Fritts, A climatology of gravity wave motions in the mesopause region at Adelaide, Australia, J. Atmos. Sci., 44, 748–760, 1987.CrossRefGoogle Scholar
  35. Waldock, P. J. and T. B. Jones, Source regions of medium-scale traveling disturbances observed at mid-latitudes, J. Atmos. Terr. Phys., 49, 105–114, 1987.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB. 2009

Authors and Affiliations

  1. 1.Department of Earth and Planetary Sciences, Faculty of SciencesKyushu UniversityHakozaki, FukuokaJapan
  2. 2.Department of Geophysics, Faculty of ScienceTohoku UniversitySendaiJapan

Personalised recommendations