Advertisement

Earth, Planets and Space

, Volume 59, Issue 4, pp 313–317 | Cite as

Ionospheric temporal and spatial variations during the 18 August 2003 storm over China

  • Debao Wen
  • Yunbin Yuan
  • Jikun Ou
  • Xingliang Huo
  • Kefei Zhang
Open Access
Letter

Abstract

The effects of the 18 August 2003 geomagnetic storm on the ionosphere over China have been first studied by combining dual-frequency Global Positioning System (GPS) observation data from the Crustal Movement Observation Network of China (CMONOC) using the computerized ionospheric tomography (CIT) technique. The temporal and spatial variations of the ionosphere are analyzed using a time series of ionospheric electron density (IED) maps, and the ionospheric storm evolution process is revealed. The tomographic results show that the main ionospheric effects of this storm over China are: (1) that positive storm phase effects usually happen in the low-latitude ionosphere, (2) that negative storm phase effects occur in the mid-latitude ionosphere, and (3) that the equatorial anomaly structure can also be found. In contrast to the quiet period of the ionosphere on 17 August 2003, the equatorial anomaly crest moved to the north in the main phase of the storm and then moved back to the original location in the recovery phase on 19 August 2003. We compared the peak density NmF2 and the peak height hmF2 obtained from the ionosonde observations at Wuhan station and those inverted by the CIT technique to confirm the reliability of the GPS-based tomographic technique. The tomographic results revealed that the GPS-based CIT technique can be used to monitor large-scale ionospheric disturbances during geomagnetic storms.

Key words

GPS ionospheric electron density computerized ionospheric tomography geomagnetic storm 

References

  1. Austen, J. R., S. J. Franke, C. H. Liu, and K. C. Yeh, Application of computerized tomography technique to ionospheric research, in URSI and COSPAR International Beacon Satellite Symposium on Radio Beacon Contribution to the Study of Ionization and Dynamics of the Ionosphere and to Corrections to Geodesy and Technical Workshop, Oulu, Finland, edited by A. Tauriainen, Proc Part I, 25, 1986.Google Scholar
  2. Blewitt, G., An automatic editing algorithm for GPS data, Geophys. Res. Lett., 17, 199–202, 1990.CrossRefGoogle Scholar
  3. Buonsanto, M. J., Ionospheric storms-a review, Space Sci. Rev., 88, 563–601, 1999.CrossRefGoogle Scholar
  4. Bust, G. S., D. Coco, and J. J. Makela, Combined ionospheric campaign 1: Ionospheric tomography and GPS total electron content (TEC) depletions, Geophys. Res. Lett., 27, 2849–2852, 2000.CrossRefGoogle Scholar
  5. Hernandez-Pajares, M., J. M. Juan, and J. Sanz, Global observation of ionospheric electronic response to solar events using ground and LEO GPS data, J. Geophys. Res., 103, 20789–20796, 1998.CrossRefGoogle Scholar
  6. Jakowski, N., E. Sardon, E. Engler, A. Jungstand, and D. Klahn, Relationship between GPS-signal propagation errors and EISCAT observations, Ann. Geophys., 14, 1429–1436, 1996.CrossRefGoogle Scholar
  7. Kunitsyn, V., E. Tershchenko, and E. Andreeva, Radiotomographic investigations of ionospheric structures at auroral and middle latitudes, Ann. Geophys., 12, 1242–1253, 1995.Google Scholar
  8. Kunitsyn, V., E. Andreeva, and O. Razinkov, Possibilities of the near-space environment radio tomography, Radio Sci., 32, 1953–1963, 1997.CrossRefGoogle Scholar
  9. Leitinger, R., H.-P. Ladreiter, and G. Kirchengast, Ionospheric tomography with data from satellite reception of Global navigation satellite system signals and ground reception of navy navigation satellite system signals, Radio Sci., 11, 1657–1669, 1997.CrossRefGoogle Scholar
  10. Liu, C. H., A. D. Richmond, J. Y. Liu, H. C. Yeh, L. J. Paxton, G. Lu, H. F. Tsai, and S.-Y. Su, Large-scale variations of the low-latitude ionosphere during the October-November 2003 superstorm: Observational results, J. Geophys. Res., 110, doi:10.1029/2004JA010900, 2005.Google Scholar
  11. Cander, L. R. and S. J. Mihajlovic, Ionospheric spatial and temporal variations during the 29–31 October 2003 storm, J. Atmos. Sol. Terr. Phys., 67, 1118–1128, 2005.CrossRefGoogle Scholar
  12. Ma, X. F. and T. Maruyama, Three-dimensional Ionospheric tomography using observation data of GPS ground receiver and ionosonde by neural network, J. Geophys. Res., 110, doi:10.1029/2004JA010797, 2005.Google Scholar
  13. Pryse, S. E., L. Kersley, and C. N. Mitchell, A comparison of reconstruction techniques used in ionospheric tomography, Radio Sci., 33, 1767–1779, 1998.CrossRefGoogle Scholar
  14. Rius, A., G. Ruffini, and L. Cucurull, Improving the vertical resolution of ionospheric tomography with GPS occultation, Geophys. Res. Lett., 24, 2291–2294, 1998.CrossRefGoogle Scholar
  15. Raymund, T. D., J. R. Austen, and S. J. Franke, Application of computerized tomography to the investigation of ionospheric structure, Radio Sci., 25, 771–789, 1990.CrossRefGoogle Scholar
  16. Wen, D. B., Y. B. Yuan, J. K. Ou, X. L. Huo, and K. F. Zhang, Three-dimensional ionospheric tomography by an improved algebraic reconstruction technique, GPS Solut., DOI 10.1007/s10291-007-0055-y, 2007.Google Scholar
  17. Yang, Y. and S. Zhang, Adaptive fitting of systematic errors in navigation, J. Geod., 79, 43–49, 2005.CrossRefGoogle Scholar
  18. Yin, P. and C. N. Mitchell, Ionospheric electron concentration imaging using GPS over USA during the storm of July 2000, Geophys. Res. Lett., 31, doi:10.1029/2004GL019899, 2004.Google Scholar
  19. Yin, P. and C. N. Mitchell, Use of radio occultation data for ionospheric imaging during the April 2003 disturbances, GPS Solut., 9, 156–163, 2005.CrossRefGoogle Scholar
  20. Yizengaw, E., E. A. Essex, and R. Birsa, The southern hemisphere and equatorial region ionization response for a 22 September 1999 severe magnetic storm, Ann. Geophys., 22, 2765–2773, 2004.CrossRefGoogle Scholar
  21. Yizengaw, E., P. L. Dyson, E. A. Essex, and M. B. Moldwin, Ionosphere dynamics over the southern Hemisphere during the 31 March 2001 severe magnetic storm using multi-instrument measurement data, Ann. Geophys., 23, 707–721, 2005.CrossRefGoogle Scholar
  22. Yuan, Y. B. and J. K. Ou, The effects of instrumental bias in GPS observations on determining ionospheric delays and the methods of its calibration, Acta Geodaet, Cartograph. Sinica, 28, 110–114, 1999.Google Scholar
  23. Yuan, Y. B., D. B. Wen, J. K. Ou, X. L. Huo, R. G. Yang, K. F. Zhang, and R. Grenfel, Preliminary research on imaging the ionosphere using CIT and China permanent GPS tracking station data, in Dynamic Planet: Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools, edited by P. Tregoning and C. Rizos, 876 pp., 2005.Google Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2007

Authors and Affiliations

  • Debao Wen
    • 1
    • 2
  • Yunbin Yuan
    • 1
  • Jikun Ou
    • 1
  • Xingliang Huo
    • 1
    • 2
  • Kefei Zhang
    • 3
  1. 1.Institute of Geodesy and GeophysicsChinese Academy of SciencesWuhanChina
  2. 2.Graduate School of Chinese Academy of SciencesBeijingChina
  3. 3.School of Mathematical and Geospatial SciencesRMIT UniversityAustralia

Personalised recommendations