Earth, Planets and Space

, Volume 59, Issue 4, pp 233–244 | Cite as

Compressional and shear wave velocities of serpentinized peridotites up to 200 MPa

Open Access


Compressional and shear wave velocities of serpentinized peridotites were measured at room temperature and high confining pressures of up to 200 MPa. Rock samples were collected from the Hida outer belt, Central Japan, and classified into High-T (containing antigorite) and Low-T (containing lizardite and/or chrysotile) types. Antigorite is stable up to 600∼700°C, while lizardite and chrysotile are stable below 300°C. High-T type samples have distinctly higher velocities than their Low-T type counterparts with the same density. The High-T type with strong foliation shows significant velocity anisotropy, and the azimuthal anisotropy of the compressional wave velocity reaches 30%. These properties can be explained by the crystallographic structure of antigorite. Poisson’s ratio increases with serpentinization in both types. The High-T type shows a lower Poisson’s ratio than the Low-T type with the same density. The High-T type requires a higher degree of serpentinization than the Low-T type to give a certain value of Poisson’s ratio. Observations of high Poisson’s ratio have been interpreted using Low-T type properties. However, High-T type serpentinized peridotite is expected in warm subduction zones. The use of Low-T type properties will lead to a significant underestimation of serpentinization. For good interpretations, it is essential to use the properties of the appropriate type of serpentinized peridotite.

Key words

Seismic velocity serpentinized peridotite antigorite Poisson’s ratio 


  1. Babuska, V. and M. Cara, Seismic Anisotropy in the Earth, Kluwer Academic Publishers, 217 pp., 1991.CrossRefGoogle Scholar
  2. Birch, F., The velocity of compressional waves in rocks to 10 kilobars, Part 1, J. Geophys. Res., 65, 1083–1102, 1960.CrossRefGoogle Scholar
  3. Birch, F., The velocity of compressional waves in rocks to 10 kilobars, Part 2, J. Geophys. Res., 66, 2199–2224, 1961.CrossRefGoogle Scholar
  4. Bostock, M. G., R. D. Hyndman, S. Rondenay, and S. M. Peacock, An inverted continental Moho and serpentinization of the forearc mantle, Nature, 417, 536–538, 2000.CrossRefGoogle Scholar
  5. Carlson, R. L. and D. J. Miller, Mantle wedge water contents estimated from seismic velocities in partially serpentinized peridotites, Geophys. Res. Lett., 30, 1250–1253, 2003.CrossRefGoogle Scholar
  6. Chihara, K., M. Komatsu, T. Uemura, Y. Hasegawa, S. Shiraishi, T. Yoshimura, and M. Nakamizu, Geology and tectonics of the Omi-Renge and Joetsu tectonic belts, Sci. Rept. Niigata Univ., Ser. E, 5, 1–61, 1979.Google Scholar
  7. Christensen, N. I., Elasticity of ultrabasic rocks, J. Geophys. Res., 71, 5921–5931, 1966.CrossRefGoogle Scholar
  8. Christensen, N. I., The abundance of serpentinites in the oceanic crust, J. Geol., 80, 709–719, 1972.CrossRefGoogle Scholar
  9. Christensen, N. I., Ophiolites, seismic velocities and oceanic crustal structure, Tectonophys., 47, 131–157, 1978.CrossRefGoogle Scholar
  10. Christensen, N. I., Pore pressure and oceanic crustal seismic structure, Geophys. J. R. astr Soc., 79, 411–423, 1984.CrossRefGoogle Scholar
  11. Christensen, N. I., Poisson’s ratio and crustal seismology, J. Geophys. Res., 101, 3139–3156, 1996.CrossRefGoogle Scholar
  12. DeShon, H. and S. Y. Schwartz, Evidence for serpentinization of the fore-arc mantle wedge along the Nicoya Peninsula, Costa Rica, Geophys. Res. Lett., 31, L21611, doi:10.1029/2004GL021179, 2004.CrossRefGoogle Scholar
  13. Dewandel, B., F. Boudier, H. Kern, W. Warsi, and D. Mainprice, Seismic wave velocity and anisotropy of serpentinized peridotite in the Oman ophiolite, Tectonophys., 370, 77–94, 2003.CrossRefGoogle Scholar
  14. Evans, B. W., W. Johannes, H. Oterdoom, and V. Trommsdorf, Stability of chrysotile and antigorite in the serpentine multisystem, Schweiz Mineral. Petrogr. Mitt., 56, 79–93, 1976.Google Scholar
  15. Graeber, F. M. and G. Asch, Three-dimensional models of P wave velocity and P-to-S ratio in the southern central Andes by simultaneous inversion of local earthquake data, J. Geophys. Res., 104, 20237–20256, 1999.CrossRefGoogle Scholar
  16. Horen, H., M. Zamora, and G. Dubuisson, Seismic wave velocities and anisotropy in serpentinized peridotites from Xigaze ophiolite: Abundance of serpentine in slow spreading ridge, Geophys. Res. Lett., 23, 9–12, 1996.CrossRefGoogle Scholar
  17. Iwamori, H., Transportation of H2O and melting in subduction zones, Earth Planet. Sci. Lett., 160, 65–80, 1998.CrossRefGoogle Scholar
  18. Iwamori, H., Deep subduction of H2O and deflection of volcanic chain towards backarc near triple junction due to lower temperature, Earth Planet. Sci. Lett., 181, 41–46, 2000.CrossRefGoogle Scholar
  19. Johnson, G. R. and G. R. Olhoeft, Densities of rocks and minerals, in Practical Handbook of Physical Properties of Rocks and Minerals vol. III, edited by R. S. Carmichael, 1–38, 1984.Google Scholar
  20. Kamiya, S. and Y. Kobayashi, Seismological evidence for the existence of serpentinized wedge mantle, Geophys. Res. Lett., 27, 819–822, 2000.CrossRefGoogle Scholar
  21. Kern, H. B. and J. M. Tubia, Pressure and temperature dependence of P-and S-wave velocities, seismic anisotropy and density of sheared rocks from Sierra Alpujata massif (Ronda peridotites, Southern Spain), Earth Planet. Sci. Lett., 119, 191–205, 1993.CrossRefGoogle Scholar
  22. Kern, H., B. Liu, and T. Popp, Relationship between anisotropy of P and S wave velocities and anisotropy attenuation in serpentinite and amphibolite, J. Geophys. Res., 102, 3051–3065, 1997.CrossRefGoogle Scholar
  23. Kumazawa, M. and O. L. Anderson, Elastic moduli, pressure derivatives, and temperature derivatives of single-crystal olivine and single-crystal forsterite, J. Geophys. Res., 74, 5961–5972, 1969.CrossRefGoogle Scholar
  24. Nesse, W. D., Introduction to Optical Mineralogy, 3rd ed., Oxford University Press, 348 pp., 2004.Google Scholar
  25. O’Connell, R. J. and B. Budiansky, Seismic velocities in dry and saturated cracked solids, J. Geophys. Res., 79, 5412–5426, 1974.CrossRefGoogle Scholar
  26. O’Hanley, D. S., A chemographic analysis of magnesian serpentinites using dual networks, Can. Mineral., 25, 121–133, 1987.Google Scholar
  27. O’Hanley, D. S., Serpentinites, Records of Tectonic and Petrological History, Oxford University Press, 277 pp., 1996.Google Scholar
  28. Peacock, S. M. and R. D. Hyndman, Hydrous minerals in the mantle wedge and the maximum depth of subduction thrust earthquakes, Geophys. Res. Lett., 26, 2517–2520, 1999.CrossRefGoogle Scholar
  29. Peacock, S. M. and K. Wang, Seismic consequences of warm versus cool subduction metamorphism: examples from Southwest and Northwest Japan, Science, 286, 937–939, 1999.CrossRefGoogle Scholar
  30. Sanford, R. F., Mineralogical and chemical effects of hydration reactions and applications to serpentinizations, Am. Mineral., 66, 290–297, 1981.Google Scholar
  31. Sano, O., Y. Kudo, and Y. Mizuta, Experimental determination of elastic constants of Ohshima granite, Barrea granite, and Chelmsford granite, J. Geophys. Res., 97, 3367–3379, 1992.CrossRefGoogle Scholar
  32. Ulmer, P. and V. Trommsdorff, Serpentinite stability to mantle depths and subduction-related magmatism, Science, 268, 858–861, 1995.CrossRefGoogle Scholar
  33. Wicks, F. J. and D. S. O’Hanley, Serpentine minerals: structures and petrology, in Reviews in Mineralogy, vol. 19: Hydrous Phyllosilicates, edited by S. W. Bailey, 91–167, 1988.Google Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2007

Authors and Affiliations

  • Tohru Watanabe
    • 1
  • Hiroaki Kasami
    • 1
  • Shohei Ohshima
    • 1
  1. 1.Department of Earth SciencesUniversity of ToyamaToyamaJapan

Personalised recommendations