Earth, Planets and Space

, Volume 61, Issue 9, pp 1053–1065 | Cite as

Stress field in the source region after the 2007 Mw 6.6 Niigataken Chuetsu-oki earthquake deduced from aftershock focal mechanisms: Implication for a pre-mainshock stress field

  • Kazutoshi Imanishi
  • Yasuto Kuwahara
Open Access


Stress fields in the source region before and after the 2007 Mw 6.6 Niigataken Chuetsu-oki earthquake were investigated using aftershock focal mechanism solutions. We have attempted to determine aftershock focal mechanisms using P-wave polarity data as well as body wave amplitudes because this earthquake occurred offshore, where observation station coverage is poor. This approach enabled us to obtain 76 well-determined aftershock focal mechanisms. Although the stress field in the studied area is known to be generally characterized by a reverse-faulting regime, the application of a stress tensor inversion method to the aftershock focal mechanisms revealed that the stress field spatially varied on a scale smaller than the fault dimension of the mainshock, with a mixture of strike-slip and reverse faulting regimes. The post-mainshock stress field estimated by the stress tensor inversion was compared with the theoretical stress field computed using an observed non-uniform slip distribution of the mainshock and variously assumed pre-shock stress fields. The results of this comparison suggest that the pre-mainshock principal stress in the WNW-ESE direction was dominant and that the magnitudes of the other two principal stresses were similar.

Key words

Niigataken Chuetsu-oki earthquake aftershock focal mechanisms pre-shock stress field stress tensor inversion 


  1. Aoi, S., H. Sekiguchi, N. Morikawa, and T. Kunugi, Source process of the 2007 Niigata-ken Chuetsu-oki earthquake derived from near-fault strong motion data, Earth Planets Space, 60, 1131–1135, 2008.CrossRefGoogle Scholar
  2. Boatwright, J., Detailed spectral analysis of two small New York State earthquakes, Bull. Seismol. Soc. Am., 68, 1117–1131, 1978.Google Scholar
  3. Cirella, A., A. Piatanesi, E. Tinti, and M. Cocco, Rupture process of the 2007 Niigata-ken Chuetsu-oki earthquake by non-linear joint inversion of strong motion and GPS data, Geophys. Res. Lett., 35, L16306, doi:10.1029/2008GL034756, 2008.Google Scholar
  4. Flohlich, C., Triangle diagrams: ternary graphs to display similarity and diversity of earthquake focal mechanism, Phys. Earth Planet. Inter., 75, 193–198, 1992.CrossRefGoogle Scholar
  5. Geological Survey of Japan, AIST, Gravity CD-ROM of Japan, Ver. 2., Digital Geoscience Map P-2, 2004.Google Scholar
  6. Ghimire, S., K. Katsumata, and M. Kasahara, Temporal changes in state of stress in the Tokachi Oki area after the 2003 Tokachi Oki Earthquake, Earth Planets Space, 57, 83–91, 2005.CrossRefGoogle Scholar
  7. Hardebeck, J. L. and E. Hauksson, Crustal stress field in southern California and its implications for fault mechanics, J. Geophys. Res., 106(B10), 21,859–21,882, 2001.CrossRefGoogle Scholar
  8. Hashimoto, M., Horizontal strain rates in the Japanese Islands during interseismic period deduced from geodetic surveys (Part I): Honshu, Shikoku and Kyushu, Zisin, 43, 13–26, 1990 (in Japanese with English abstract).Google Scholar
  9. Hauksson, E., State of stress from focal mechanisms before and after the 1992 Landers earthquake sequence, Bull. Seismol. Soc. Am., 84, 917–934, 1994.Google Scholar
  10. Hauksson, E., L. M. Jones, and K. Hutton, The 1994 Northridge earthquake sequence in California: Seismological and tectonic aspects, J. Geophys. Res., 100(B7), 12,335–12,355, 1995.CrossRefGoogle Scholar
  11. Hirata, N. and M. Matsu’ura, Maximum-likelihood estimation of hypocenter with origin time eliminated using nonlinear inversion technique, Phys. Earth Planet. Inter., 47, 50–61, 1987.CrossRefGoogle Scholar
  12. Horikawa, H., The 2007 Chuetsu-oki, Japan, Earthquake: Rupture over a complicated fault system, Japan Geoscience Union Meeting, S142–P002, 2008.Google Scholar
  13. Imanishi, K., I. Cho, Y. Kuwahara, N. Hirata, and Y. Panayotopoulos, Focal mechanism solutions of microearthquakes around the southern part of the Itoigawa-Shizuoka Tectonic Line active fault system, Annual Report on Active Fault and Paleoearthquake Researches, No. 6, 55–70, 2006a (in Japanese with English abstract).Google Scholar
  14. Imanishi, K., Y. Kuwahara, and Y. Haryu, Off-fault aftershocks of the 2005 West Off Fukuoka Prefecture Earthquake: Reactivation of a structural boundary?, Earth Planets Space, 58, 81–86, 2006b.CrossRefGoogle Scholar
  15. Imanishi, K., Y. Kuwahara, T. Takeda, and Y. Haryu, The seismicity, fault structures, and stress field in the seismic gap adjacent to the 2004 Mid-Niigata earthquake inferred from seismological observations, Earth Planets Space, 58, 831–841, 2006c.CrossRefGoogle Scholar
  16. Kato, A., S. Sakai, N. Hirata, E. Kurashimo, T. Iidaka, T. Iwasaki, and T. Kanazawa, Imaging the seismic structure and stress field in the source region of the 2004 mid-Niigata prefecture earthquake: Structural zones of weakness and seismogenic stress concentration by ductile flow, J. Geophys. Res., 111, B08308, doi:10.1029/2005JB004016, 2006.Google Scholar
  17. Kato, A., S. Sakai, E. Kurashimo, T. Igarashi, T. Iidaka, N. Hirata, T. Iwasaki, T. Kanazawa, and Group for the aftershock observations of the 2007 Niigataken Chuetsu-oki Earthquake, Imaging heterogeneous velocity structures and complex aftershock distributions in the source region of the 2007 Niigataken Chuetsu-oki Earthquake by a dense seismic observation, Earth Planets Space, 60, 1111–1116, 2008.CrossRefGoogle Scholar
  18. Kilb, D., M. Ellis, J. Gomberg, and S. Davis, On the origin of diverse aftershock mechanisms following the 1989 Loma Prieta earthquake, Geophys. J. Int., 128, 557–570, 1997.CrossRefGoogle Scholar
  19. Lehner, F. K., V. C. Li, and J. R. Rice, Stress diffusion along rupturing plate boundaries, J. Geophys. Res., 86(B7), 6155–6169, 1981.CrossRefGoogle Scholar
  20. Lund, B. and J. Townend, Calculating horizontal stress orientations with full or partial knowledge of the tectonic stress tensor, Geophys. J. Int., doi:10.1111/j.1365-246X.2007.03468.x, 2007.Google Scholar
  21. Mazzotti, S., P. Henry, and X. L. Pichon, Transient and permanent deformation of central Japan estimated by GPS, 2. Strain partitioning and arc-arc collision, Earth Planet. Sci. Lett., 184, 455–469, 2001.CrossRefGoogle Scholar
  22. Michael, A. J., Determination of stress from slip data: faults and folds, J. Geophys. Res., 89(B13), 11,517–11,526, 1984.CrossRefGoogle Scholar
  23. Michael, A. J., Use of focal mechanisms to determine stress: A control study, J. Geophys. Res., 92(B1), 357–368, 1987.CrossRefGoogle Scholar
  24. Okada, Y., Internal deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 82, 1018–1040, 1992.Google Scholar
  25. Okada, Y., K. Kasahara, S. Hori, K. Obara, S. Sekiguchi, H. Fujiwara, and A. Yamamoto, Recent progress of seismic observation networks in Japan—Hi-net, F-net, K-NET and KiK-net—, Earth Planets Space, 56, xv–xxviii, 2004.CrossRefGoogle Scholar
  26. Oppenheimer, D. H., P. A. Reasenberg, and R. W. Simpson, Fault plane solutions for the 1984 Morgan Hill, California, earthquake sequence: Evidence for the state of stress on the Calaveras fault, J. Geophys. Res., 93(B8), 9007–9026, 1988.CrossRefGoogle Scholar
  27. Ozawa, T., Coseismic deformation of the 2007 Chuetsu-oki Earthquake derived from PALSAR/InSAR and its fault model, Earth Planets Space, 60, 1099–1104, 2008.CrossRefGoogle Scholar
  28. Polat, O., H. Haessler, A. Cisternas, H. Philip, H. Eyidogan, M. Aktar, M. Frogneux, D. Comte, and C. Gürbüz, The Izmit (Kocaeli), Turkey Earthquake of 17 August 1999: Previous seismicity, aftershocks, and seismotectonics, Bull. Seismol. Soc. Am., 92, 361–375, 2002.CrossRefGoogle Scholar
  29. Provost, A.-S. and H. Houston, Investigation of variations in stress orientations before and after four major earthquakes in California, Phy. Earth Planet. Inter., 139, 255–267, 2003.CrossRefGoogle Scholar
  30. Ratchkovski, N. A., S. Wiemer, and R. A. Hansen, Seismotectonics of the central Denali fault, Alaska, and the 2002 Denali fault earthquake sequence, Bull. Seismol. Soc. Am., 94, S156–S174, 2004.CrossRefGoogle Scholar
  31. Research Group for Active Faults of Japan, Active Faults of Japan, University of Tokyo Press, 1991 (in Japanese).Google Scholar
  32. Sagiya, T., S. Miyazaki, and T. Tada, Continuous GPS array and present-day crustal deformation of Japan, Pure Appl. Geophys., 157, 2303–2322, 2000.Google Scholar
  33. Sato, H., The relationship between late Cenozoic tectonic events and stress field and basin development in northeast Japan, J. Geophys. Res., 99(B11), 22,261–22,274, 1994.CrossRefGoogle Scholar
  34. Shinohara, M., T. Kanazawa, T. Yamada, K. Nakahigashi, S. Sakai, R. Hino, Y. Murai, A. Yamazaki, K. Obana, Y. Ito, K. Iwakiri, R. Miura, Y. Machida, K. Mochizuki, K. Uehira, M. Tahara, A. Kuwano, S. Amamiya, S. Kodaira, T. Takanami, Y. Kaneda, and T. Iwasaki, Precise aftershock distribution of the 2007 Chuetsu-oki Earthquake obtained by using an ocean bottom seismometer network, Earth Planets Space, 60, 1121–1126, 2008.CrossRefGoogle Scholar
  35. Sibson, R. H., An episode of fault-valve behavior during compressional inversion?—The 2004 MJ 6.8 Mid-Niigata Prefecture, Japan, earthquake sequence, Earth Planet. Sci. Lett., 257, 188–199, 2007.CrossRefGoogle Scholar
  36. Takeda, T., H. Sato, T. Iwasaki, N. Matsuda, S. Sakai, T. Iidaka, and A. Kato, Crustal structure in the northern Fossa Magna region, central Japan, modeled from refraction/wide-angle reflection data, Earth Planets Space, 56, 1293–1299, 2004.CrossRefGoogle Scholar
  37. Townend, J., What do faults feel? Observational constraints on the stresses acting on seismogenic faults, in Earthquakes: Radiated energy and the physics of faulting, edited by Abercrombie et al., AGU Geophysical Monograph Series, 170, 313–327, 2006.Google Scholar
  38. Townend, J. and M. D. Zoback, Implications of earthquake focal mechanisms for the frictional strength of the San Andreas fault system, in The Nature and Significance of Fault Zone Weakening, edited by R. E. Holdsworth et al., 186, 13–21, Geological Society of London Special Publication, 2001.Google Scholar
  39. Townend, J. and M. D. Zoback, Stress, strain, and mountain building in central Japan, J. Geophys. Res., 111, B03411, doi:10. 1029/2005JB003759, 2006.Google Scholar
  40. Waldhauser, F. and W. L. Ellsworth, A double-difference earthquake location algorithm: Method and application to the Northern Hayward fault, California, Bull. Seismol. Soc. Am., 90, 1353–1368, 2000.CrossRefGoogle Scholar
  41. Wessel, P. and W. H. F. Smith, New, improved version of the Generic Mapping Tools released, Eos Trans. AGU, 79, 579, 1998.CrossRefGoogle Scholar
  42. Wesson, R. L. and O. S. Boyd, Stress before and after the 2002 Denali fault earthquake, Geophys. Res. Lett., 34, L07303, doi:10. 1029/2007GL029189, 2007.CrossRefGoogle Scholar
  43. Yanagisawa, Y., K. Chihara, I. Suzuki, T. Uemura, K. Kodama, and H. Kato, Geology of the Tokamachi district, with geological sheet map at 1:50,000, 104 pp., Geol. Surv. Jpn., Tokyo, 1985 (in Japanese with English abstract).Google Scholar
  44. Yukutake, Y., Y. Iio, H. Katao, and T. Shibutani, Estimation of the stress field in the region of the 2000 Western Tottori Earthquake: Using numerous aftershock focal mechanisms, J. Geophys. Res., 112, B09306, doi:10.1029/2005JB004250, 2007.Google Scholar
  45. Yukutake, Y., T. Takeda, and K. Obara, Well-resolved hypocenter distribution using the double-difference relocation method in the region of the 2007 Chuetsu-oki earthquake, Earth Planets Space, 60, 1105–1109, 2008.CrossRefGoogle Scholar
  46. Zhang, H. and C. H. Thurber, Double-difference tomography: The method and its application to the Hayward fault, California, Bull. Seismol. Soc. Am., 93, 1875–1889, 2003.CrossRefGoogle Scholar
  47. Zhao, D., H. Kanamori, and D. Wiens, State of stress before and after the 1994 Northridge earthquake, Geophys. Res. Lett., 24(5), 519–522, 1997.CrossRefGoogle Scholar
  48. Zoback, M. D. and G. C. Beroza, Evidence for near-frictionless faulting in the 1989 (M6.9) Loma Prieta, California, earthquake and its aftershocks, Geology, 21, 181–185, 1993.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB. 2009

Authors and Affiliations

  1. 1.Geological Survey of JapanAIST, AIST Tsukuba Central 7Tsukuba, IbarakiJapan

Personalised recommendations