Advertisement

Earth, Planets and Space

, Volume 61, Issue 2, pp 227–235 | Cite as

Shear-wave splitting analysis of the upper mantle at the Niigata-Kobe Tectonic Zone with the data of the Joint Seismic Observations at NKTZ

  • Takashi Iidaka
  • Yoshihiro Hiramatsu
  • The Japanese University Group of the Joint Seismic Observations at NKTZ
Open Access
Article

Abstract

We conducted seismic observations with a spatially high density seismic network at the Niigata-Kobe Tectonic Zone, central Japan. The seismic network was used for the analysis of shear-wave splitting. Large lateral variations were found in the polarization direction data: the northern part of the research area yields polarization directions ofNW-SE (Region A), the central part of the research area with the polarization direction of NNE-SSW (Region B), the eastern part of the research area with the polarization direction of NE-SW (Region C), and the southern part of the research area with the polarization direction of E-W (Region D). The polarization directions in Regions B and C could be explained by the preferred orientation of olivine caused by the flow of the subducting Philippine Sea plate. However, the cause of anisotropic region which was related to the heterogeneous structure was also plausible. The polarization direction in Region A might be related to the flow caused by both of the subducting Philippine Sea and Pacific slabs. The polarization direction at the Region D could not be produced by the flow in the wedge and might be related to an anisotropic region beneath the slab. The lateral variation of the polarization direction does not support a model that the NKTZ is a collision region.

Key words

Shear-wave splitting NKTZ anisotropy Atotsugawa fault S wave 

References

  1. Ando, M., The stress field of the Japanese Island in the last 0.5 million years, Earth Mon. Symp., 7, 541–546, 1979 (in Japanese).Google Scholar
  2. Ando, M., Mantle diapers observed in the seismic window, Bull. Volcanol. Soc. Jpn., 31, 45–53, 1986 (in Japanese with English abstract).Google Scholar
  3. Ando, M., Y. Ishikawa, and F. Yamazaki, Shear-wave polarization anisotropy in the upper mantle beneath Honshu, Japan, J. Geophys. Res., 88, 5850–5864, 1983.CrossRefGoogle Scholar
  4. Audoine, E. L., M. K. Savage, and K. R. Gledhill, Anisotropic structure under a back-arc spreading region, the Taupo Volcanic Zone, New Zealand, J. Geophys. Res., 109, B11305, doi:10.1029/2003JB002932, 2004.Google Scholar
  5. Bibee, L. D. and G. G. Shor, Jr., Compressional wave anisotropy in the crust and upper mantle, Geophys. Res. Lett., 3, 639–642, 1976.CrossRefGoogle Scholar
  6. Birch, F., The velocity of compressional waves in rocks to 10 kilobars, 1, J. Geophys. Res., 65, 1083–1102, 1960.CrossRefGoogle Scholar
  7. Birch, F., The velocity of compressional waves in rocks to 10 kilobars, 2, J. Geophys. Res., 66, 2199–2224, 1961.CrossRefGoogle Scholar
  8. Crampin, S., Seismic-wave propagation through a cracked solid: Polarization as a possible dilatancy diagnostic, Geophys. J. R. Astron. Soc., 53, 467–496, 1978.CrossRefGoogle Scholar
  9. Crampin, S., A review of wave motion in anisotropic and cracked elasticmedium, Wave Motion, 3, 343–391, 1981.CrossRefGoogle Scholar
  10. Crampin, S., R. Evans, B. Ucer, M. Doyle, J. P. Davis, G. V. Yegorkina, and A. Miller, Observations of dilatancy-induced polarization anomalies and earthquake prediction, Nature, 286, 847–877, 1980.CrossRefGoogle Scholar
  11. Fischer, K. M. and X. Yang, Anisotropy in Kuril-Kamchatka subduction zone structure, Geophys. Res. Lett., 21, 5–8, 1994.CrossRefGoogle Scholar
  12. Fischer, K. M., E. M. Parmentier, A. R. Stine, and E. R. Wolf, Modeling anisotropy and plate-driven flow in the Tonga subduction back arc, J. Geophys. Res., 105, 16,181–16,191, 2000.CrossRefGoogle Scholar
  13. Francis, T. J. G., Generation of seismic anisotropy in the upper mantle along the mid-oceanic ridges, Nature, 221, 162–165, 1969.CrossRefGoogle Scholar
  14. Fuchs, K., Seismic anisotropy of the subcrustal lithosphere as evidence for dynamical processes in the upper mantle, Geophys. J. R. Astron. Soc., 49, 167–179, 1977.CrossRefGoogle Scholar
  15. Fukao, Y., Evidence from core-reflected shear waves anisotropy in the Earth’s mantle, Nature, 309, 695–698, 1984.CrossRefGoogle Scholar
  16. Gupta, I. N., Premonitory variations in S-wave velocity anisotropy before earthquakes in Nevada, Science, 182, 1129–1132, 1973.CrossRefGoogle Scholar
  17. Heki, K. and S. Miyazaki, Plate convergence and long-term crustal deformation, Geophys. Res. Lett., 28, 2313–2316, 2001.CrossRefGoogle Scholar
  18. Hess, H. H., Seismic anisotropy of the uppermost mantle under oceans, Nature, 203, 629–631, 1964.CrossRefGoogle Scholar
  19. Hirahara, K., A. Ikami, M. Ishida, and T. Mikumo, Three-dimensional Pwave velocity structure beneath central Japan: low-velocity bodies in the wedge portion of the upper mantle above high-velocity subducting plates, Tectonophys., 163, 63–73, 1989.CrossRefGoogle Scholar
  20. Hiramatsu, Y., M. Ando, T. Tsukuda, and T. Ooida, Three-dimensional image of the anisotropic bodies beneath central Honshu, Japan, Geophys. J. Int., 135, 801–816, 1998.CrossRefGoogle Scholar
  21. Hsui, A. T. and M. N. Toksoz, The evolution of thermal structures beneath a subduction zone, Tectonophys., 60, 43–60, 1979.CrossRefGoogle Scholar
  22. Hyodo, M. and K. Hirahara, A viscoelastic model of interseismic strain concentration in Niigata-Kobe Tectonic Zone of central Japan, Earth Planets Space, 55, 667–675, 2003.CrossRefGoogle Scholar
  23. Iidaka, T. and K. Obara, Shear-wave polarization anisotropy in the upper mantle from a deep earthquake, Phys. Earth Planet. Inter., 82, 19–25, 1994.CrossRefGoogle Scholar
  24. Iidaka, T. and K. Obara, Shear-wave polarization anisotropy in the mantle wedge above the subducting Pacific plate, Tectonophys., 249, 53–68, 1995.CrossRefGoogle Scholar
  25. Iidaka, T., T. Iwasaki, T. Takeda, T. Moriya, I. Kumakawa, E. Kurashimo, T. Kawamura, F. Yamazaki, K. Koike, and G. Aoki, Configuration of subducting Philippine Sea plate and crustal structure in the central Japan region, Geophys. Res. Lett., 30, 23–1–23–4, 2003.CrossRefGoogle Scholar
  26. Iio, Y., T. Sagiya, Y. Kobayashi, and I. Shiozaki, Water-weakened lower crust and its role in the concentrated deformation in the Japanese Islands, Earth Planet. Sci. Lett., 203, 245–253, 2002.CrossRefGoogle Scholar
  27. Jung, H. and S. Karato, Water-induced fabric transitions in olivine, Science, 293, 1460–1463, 2001.CrossRefGoogle Scholar
  28. Kaneshima, S., Origin of crustal anisotropy: Shear wave splitting studies in Japan, J. Geophys. Res., 95, 11121–11133, 1990.CrossRefGoogle Scholar
  29. Katayama, I., H. Jung, and S. Karato, New type of olivine fabric from deformation experiments at modest water content and low stress, Geology, 32, 1045–1048, 2004.CrossRefGoogle Scholar
  30. Kneller, E. A., P. E. van Karen, S. Karato, and J. Park, B-type olivine fabric in the mantle wedge: Insights from high-resolution Non-Newtonian subduction zone models, Earth Planet. Sci. Lett., 237, 781–797, 2005.CrossRefGoogle Scholar
  31. Long, M. D. and R. van der Hilst, Shear wave splitting from local events beneath the Ryukyu arc: Trench-parallel anisotropy in the mantle wedge, Phys. Earth Planet. Inter., 155, 300–312, 2006.CrossRefGoogle Scholar
  32. Mazzotti, S., X. Le Pichon, and P. Henry, Full interseismic locking of the Nankai and Japan-west Kurile subduction zones: An analysis of uniform elastic strain accumulation in Japan constrained by permanent GPS, J. Geophys. Res., 105, 13159–13177, 2000.CrossRefGoogle Scholar
  33. McKenzie, D., Finite deformation during fluid flow, Geophys. J. R. Astron. Soc., 58, 689–715, 1979.CrossRefGoogle Scholar
  34. Mendiguren, J. A., Study of mechanisms deep earthquakes in Argentina using non-linear particle motion of S waves, Bull. Seismol. Soc. Am., 59, 1449–1473, 1969.Google Scholar
  35. Miyazaki, S. and K. Heki, Crustal velocity field of southwest Japan: Subduction and arc-arc collision, J. Geophys. Res., 106, 4305–4326, 2001.CrossRefGoogle Scholar
  36. Mizuno, T., H. Ito, Y. Kuwahara, K. Imanishi, and T. Takeda, Spatial variation of shear-wave splitting across an active fault and its implication for stress accumulation mechanism of inland earthquakes: The Atotsugawa fault case, Geopys. Res. Lett., 32, L20305, doi:10.1029/2005GL023875, 2005.CrossRefGoogle Scholar
  37. Nakajima, J. and A. Hasegawa, Shear-wave polarization anisotropy and subduction-induced flow in the mantle wedge of northeastern Japan, Earth Planet. Sci. Lett., 225, 365–377, 2004.CrossRefGoogle Scholar
  38. Nakajima, J. and A. Hasegawa, Subduction of the Philippine Sea plate beneath southwestern Japan: Slab geometry and its relationship to arc magmatism, J. Geophys. Res., 112, B08306, doi:10.1029/2006JB004770, 2007a.Google Scholar
  39. Nakajima, J. and A. Hasegawa, Deep crustal structure along the Niigata- Kobe Tectonic Zone, Japan: Its origin and segmentation, Earth Planets Space, 59, e5–e8, 2007b.CrossRefGoogle Scholar
  40. Nakajima, J., J. Shimizu, S. Hori, and A. Hasegawa, Shear-wave splitting beneath the southwestern Kurile arc and northeastern Japan arc: A new insight into mantle return flow, Geophys. Res. Lett., 33, L05305, doi:10. 1029/2005GL025023, 2006.Google Scholar
  41. Nakamura, R., K. Shimazaki, and T. Hashida, 3-D attenuation structure beneath the Japanese Islands by tomographic inversion of seismic intensity data and predicting JMA seismic intensity distribution in a broad area, Zisin, 47, 21–32, 1994 (in Japanese with English abstract).Google Scholar
  42. Nicolas, A. and N. I. Christensen, Formationof anisotropy in upper mantle peridotites—A review, in Composition, Strustutre and Dynamics of the Lithosphere-Asthenosphere System, edited by K. Fucks and C. Froidevaux, Geodyn. Ser., AGU, 16, 111–123, 1987.CrossRefGoogle Scholar
  43. Nur, A. and G. Simmons, Stress induced anisotropy in rocks: An experimental study, J. Geophys. Res., 74, 6667–6674, 1969.CrossRefGoogle Scholar
  44. Nuttli, O., The effect of the earth’s surface on the S wave particle motion, Bull. Seismol. Soc. Am., 51, 237–246, 1961.Google Scholar
  45. Peselnick, L. and A. Nicolas, Seismic anisotropy in ophiolite peridotite: Application to oceanic upper mantle, J. Geophys. Res., 83, 1227–1235, 1978.CrossRefGoogle Scholar
  46. Peselnick, L., A. Nicolas, and P. R. Stevenson, Velocity anisotropy in a mantle peridotite from the Iverea zone, application to upper mantle anisotropy, J. Geophys. Res., 79, 1175–1182, 1974.CrossRefGoogle Scholar
  47. Sagiya, T., S. Miyazaki, and T. Tada, Continuous GPS Array and Presentday crustal deformation of Japan, Pure. Appl. Geophys., 157, 2303–2322, 2000.Google Scholar
  48. Sekiguchi, S., Three-dimensional Q structure beneath the Kanto-Tokai district, Tectonophys., 195, 83–104, 1991.CrossRefGoogle Scholar
  49. Shimazaki, K. and Y. Zhao, Dislocation model for strain accumulation in a plate collision zone, Earth Planet. Sci. Lett., 52, 1091–1094, 2000.Google Scholar
  50. Silver, P. G. and W. W. Chan, Shear wave splitting and subcontinental mantle deformation, J. Geophys. Res., 96, 16429–16454, 1991.CrossRefGoogle Scholar
  51. Sugimura, A. and S. Uyeda, A possible anisotropy of the upper mantle accounting for deep earthquake faulting, Tectonophys., 5, 25–33, 1967.CrossRefGoogle Scholar
  52. Tatsumi, Y., M. Sakuyama, H. Fukuyama, and I. Kushiro, Generation of arc basalt magmas and thermal structure of the mantle wedge in subduction zones, J. Geophys. Res., 88, 5815–5825, 1983.CrossRefGoogle Scholar
  53. The Japanese University Group of the Joint Seismic Observations at NKTZ, The university joint seismic observations at the Niigata-Kobe Tectonic Zone, Bull. Earthq. Res. Inst., Univ. Tokyo, 80, 133–147, 2005.Google Scholar
  54. Wessel, P. and W. H. F. Smith, New version of the Generic Mapping Tools Released, Eos Trans. AGU, 76, 329, 1995.CrossRefGoogle Scholar
  55. Yamasaki, T. and T. Seno, High strain rate zone in central Honshu resulting from the viscosity heterogeneities in the crust and mantle, Earth Planet. Sci. Lett., 232, 13–27, 2005.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB. 2009

Authors and Affiliations

  • Takashi Iidaka
    • 1
  • Yoshihiro Hiramatsu
    • 2
  • The Japanese University Group of the Joint Seismic Observations at NKTZ
  1. 1.Earthquake Research InstituteUniversity of TokyoBunkyo, TokyoJapan
  2. 2.Kanazawa UniversityKanazawaJapan

Personalised recommendations