Earth, Planets and Space

, Volume 61, Issue 1, pp 125–131 | Cite as

Frequency and field dependent susceptibility of magnetite at low temperature

  • Özden Özdemir
  • David J. Dunlop
  • Michael Jackson
Open Access


We report the temperature dependence of in-phase and quadrature susceptibilities, k′ and k″, between 20 K and 300 K for a stoichiometric natural single crystal of magnetite. Measurements were made for amplitudes of the AC driving field ranging from H = 30 A/m to 2 kA/m and frequencies ranging from f = 40 Hz to 4 kHz. In cubic magnetite above the Verwey transition, TV = 120 K, k′ is limited by self-demagnetization and does not vary greatly with T, H or f. As the crystal cools through TV and transforms to monoclinic structure, k′ decreases by about a factor 2, with a further more gradual decrease of 10-20% in cooling from 40 to 20 K. Saturation remanence also drops sharply at TV but shows no further change in cooling below 40 K. Thus it appears that domain walls remain pinned throughout the 20-40 K range but small segments undergo reversible oscillations in an AC field, the amplitude of oscillation decreasing steadily with cooling below 40 K. In this same range, k″ reaches a peak, while the temperature at which k′ decreases most rapidly changes with frequency. Both observations indicate that domain wall oscillations lag appreciably behind the driving field at very low temperature. Both k′ and k″ increase markedly with increasing AC field amplitude below TV. The field dependence is particularly strong below 40 K. Analysis of the k′(f) data between 20 and 40 K based on an Arrhenius thermal activation equation gives a pre-exponential frequency factor fo ≈ 2.5 × 108 s-1 and an activation energy ΔE = 0.035 eV. The ΔE is appropriate for electron hopping but fo suggests an indirect mechanism for wall mobility related to changes in electron ordering within walls.

Key words

Magnetite susceptibility low temperature Verwey transition frequency-dependent magnetization field-dependent magnetization 


  1. Abe, K., Y. Miyamoto, and S. Chikazumi, Magnetocrystalline anisotropy of low temperature phase of magnetite, J. Phys. Soc. Jpn., 41, 1894–1902, 1976.CrossRefGoogle Scholar
  2. Balanda, M., A. Wiecheć, D. Kim, Z. Kąkol, A. Kozlowski, P. Niedziela, J. Sabol, Z. Tarnawski, and J. M. Honig, Magnetic AC susceptibility of stoichiometric and low zinc doped magnetite single crystals, Eur. Phys. J., B43, 201–212, 2005.CrossRefGoogle Scholar
  3. Carter-Stiglitz, B., B. Moskowitz, P. Solheid, T. S. Berquó, M. Jackson, and A. Kosterov, Low-temperature magnetic behavior of multidomain titanomagnetites: TM0, TM16, and TM35, J. Geophys. Res., 111, B12S05, doi:10.1029/2006JB004561, 2006.Google Scholar
  4. Clark, D. A. and P. W. Schmidt, Theoretical analysis of thermomagnetic properties, low-temperature hysteresis and domain structure of titanomagnetites, Phys. Earth Planet. Inter., 30, 300–316, 1982.CrossRefGoogle Scholar
  5. Dunlop, D. J., Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc), 2. Application to data for rocks, sediments, and soils, J. Geophys. Res., 107, 2057, doi: 10.1029/2001JB000487, 2002.Google Scholar
  6. Dunlop, D. J. and Ö. Özdemir, Rock Magnetism: Fundamentals and Frontiers, 573 pp., Cambridge Univ. Press, Cambridge and New York, 1997.CrossRefGoogle Scholar
  7. Iwauchi, K, N. Koizumi, M. Kiyama, and Y Bando, Magnetic relaxation in Fe3O4 and ferrites, Bull. Inst. Chem. Res. Kyoto Univ., 54, 255–262, 1976.Google Scholar
  8. Jackson, M., B. Moskowitz, J. Rosenbaum, and C. Kissel, Field dependence of AC susceptibility in titanomagnetites, Earth Planet. Sci. Lett., 157, 129–139, 1998.CrossRefGoogle Scholar
  9. Janů, Z., J. Hadaĉ, and Z. Ŝvindrych, Glass-like and Verwey transitions in magnetite in details, J. Magn. Magn. Mat., 310, e203–e205, 2007.CrossRefGoogle Scholar
  10. Kosterov, A., Low-temperature magnetization and AC susceptibility of magnetite: effect of thermomagnetic history, Geophys. J. Int., 154, 58–71, 2003.CrossRefGoogle Scholar
  11. Kronmüller, H. and F. Walz, Magnetic after-effects in Fe3O4 and vacancydoped magnetite, Phil. Mag., B42, 433–452, 1980.CrossRefGoogle Scholar
  12. Lenge, N. and H. Kronmuller, Electrical conductivity and magnetic aftereffect in the ordered phase of magnetite, Adv. Ceramics, 15, 331–339, 1984.Google Scholar
  13. Mizoguchi, M., Abrupt change of NMR line shape in the low temperature phase of Fe3O4, J. Phys. Soc. Jpn., 54, 4295–4299, 1985.CrossRefGoogle Scholar
  14. Moskowitz, B. M., M. Jackson, and C. Kissel, Low-temperature magnetic behavior of titanomagnetites, Earth Planet. Sci. Lett., 157, 141–149, 1998.CrossRefGoogle Scholar
  15. Mullins, C. E. and M. S. Tite, Magnetic viscosity, quadrature susceptibility, and frequency dependence of susceptibility in single-domain assemblages of magnetite and maghemite, J. Geophys. Res., 78, 804–809, 1973.CrossRefGoogle Scholar
  16. Muxworthy, A. R., Low-temperature susceptibility and hysteresis of magnetite, Earth Planet. Sci. Lett., 169, 51–58, 1999.CrossRefGoogle Scholar
  17. Muxworthy, A. R. and W Williams, Low-temperature viscous magnetization of multidomain magnetite: Evidence for disaccommodation contribution, J. Magn. Magn. Mat., 307, 113–119, 2006.CrossRefGoogle Scholar
  18. Özdemir, Ö., Coercive force of single crystals of magnetite at low temperatures, Geophys. J. Int., 141, 351–356, 2000.CrossRefGoogle Scholar
  19. Özdemir, Ö. and D. J. Dunlop, Low-temperature properties of a single crystal of magnetite oriented along principal magnetic axes, Earth Planet. Sci. Lett., 165, 229–239, 1999.CrossRefGoogle Scholar
  20. Özdemir, Ö., D. J. Dunlop, and B. M. Moskowitz, Changes in remanence, coercivity and domain state at low temperature in magnetite, Earth Planet. Sci. Lett., 194, 343–358, 2002.CrossRefGoogle Scholar
  21. Rochette, P., G. Fillion, J.-L. Mattéi, and M. J. Dekkers, Magnetic transition at 30-34 Kelvin in pyrrhotite: insight into a widespread occurrence of this mineral in rocks, Earth Planet. Sci. Lett., 98, 319–328, 1990.CrossRefGoogle Scholar
  22. Skumryev, V., H. J. Blythe, J. Cullen, and J. M. D. Coey, AC susceptibility of a magnetite crystal, J. Magn. Magn. Mat., 196-197, 515–517, 1999.CrossRefGoogle Scholar
  23. Walz, F. and H. Kronmüller, Evidence for a single-stage Verwey transition in perfect magnetite, Phil. Mag., B64, 623–628, 1991.CrossRefGoogle Scholar
  24. Walz, F. and H. Kronmüller, Analysis of magnetic point-defect relaxations in electron-irradiated magnetite, Phys. Stat. Sol., B181, 485–498, 1994.CrossRefGoogle Scholar
  25. Walz, F., V. A. M. Brabers, S. Chikazumi, H. Kronmuller, and M. O. Rigo, Magnetic after-effects in single- and poly-crystalline magnetite, Phys. Stat. Sol., B110, 471–478, 1982.CrossRefGoogle Scholar
  26. Walz, F., V. A. M. Brabers, and H. Kronmuller, Analysis of magnetite and related ferrites by means of magnetic after-effect-spectra, J. Phys. IV France, 7 suppl. C1, 569–572, 1997.Google Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB. 2009

Authors and Affiliations

  • Özden Özdemir
    • 1
  • David J. Dunlop
    • 1
  • Michael Jackson
    • 2
  1. 1.Geophysics, Department of PhysicsUniversity of TorontoTorontoCanada
  2. 2.Institute for Rock MagnetismUniversity of MinnesotaMinneapolisUSA

Personalised recommendations