Earth, Planets and Space

, Volume 61, Issue 1, pp 23–39 | Cite as

Rock magnetic and paleointensity results from Mesozoic baked contacts of Armenia

  • V. V. Shcherbakova
  • M. Perrin
  • V. P. Shcherbakov
  • V. E. Pavlov
  • A. Ayvaz’yan
  • G. V. Zhidkov
Open Access


Samples were obtained from three baked contacts and one lava flow along the upper Turonian-lower Coniacian Tovuz section, two baked contacts along the upper Coniacian-lower Santonian Paravakar section in the northern part of Armenia, and three baked contacts along the Titonian-Valanginian Kafan section in southern Armenia. A total of 130 samples were studied. Updated mean paleomagnetic poles were calculated for the Upper Cretaceous Tovuz-Paravakar sections (65.6°N, 162.2°E, A95 = 4.3, paleolatitude = 27.0 ± 3.4°) and the Upper Jurassic-Lower Cretaceous Kafan section (61.7°N, 158.9°E, A95 = 4.8°, paleolatitude = 24.7 ± 3.8°). Paleointensity determinations could be estimated from two of the upper Cretaceous and three of the Upper Jurassic-Lower Cretaceous baked contacts, corresponding to a 30% success rate. The mean virtual dipole moments obtained were low (1.7-5.5 × 1022 A m2), which is in agreement with data published by Bol’shakov and Solodovnikov (1981a, 1983) for the same sections (3.0-4.4 × 1022 A m2). Our results support the hypothesis of the Mesozoic Dipole Low, even though the overall data are widely dispersed.

Key words

Paleointensity Armenia Cretaceous baked contacts Thellier method 


  1. Avanesyan, A. S. and M. A. Avanesyan, Tectonic zonation of Armenia, in Investigation of geological conditions of possible sites for radioac tive waste disposal, edited by Gukasyan, Yu A., Funds of Institute of Geological Research Armenian National Academy of Science, 2006 (in Armenian).Google Scholar
  2. Biggin, A. and D. N. Thomas, The application of acceptance criteria to results of Thellier palaeointensity experiments performed on samples with pseudo-single-domain-like characteristics, Phys. Earth Planet. In ter., 138, 279–287, 2003.CrossRefGoogle Scholar
  3. Bol’shakov, A. S. and G. M. Solodovnikov, Intensity of the geomagnetic field in Late Cretaceous time, Izv. Earth Phys., 17, 754–761, 1981a.Google Scholar
  4. Bol’shakov, A. S. and G. M. Solodovnikov, Geomagnetic field intensity in last 400 million years, Doklady AS USSR, 260(6), 1340–1343, 1981b.Google Scholar
  5. Bol’shakov, A. S. and G. M. Solodovnikov, Geomagnetic field intensity in Armenia in the Late Jurassic and Early Cretaceous, Izv. Earth Phys., 19, 976–982, 1983.Google Scholar
  6. Chubaryan, H. A. and M. A. Arakelyan, Geological structure of the water shed of middle streams of Agstev and Mehrab rivers, Summary report, Armenian Geological Funds, Yerevan, 1962 (in Armenian).Google Scholar
  7. Coe, R. S., The determination of paleointensities of the Earth magnetic field with special emphasize on mechanisms which could cause nonideal behavior in Thellier method, J. Geomag. Geoelectr., 19, 157–179, 1967.CrossRefGoogle Scholar
  8. Coe, R. S., C. S. Gromme, and E. A. Mankinen, Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipole low, J. Geophys. Res., 83, 1740–1756, 1978.CrossRefGoogle Scholar
  9. Cottrell, R. D. and J. A. Tarduno, In search of high-fidelity geomagnetic paleointensities: A comparison of single plagioclase crystal and whole rock Thellier-Thellier analyses, J. Geophys. Res., 105, 23,579–23,594, 2000.CrossRefGoogle Scholar
  10. Day, R. S., M. Fuller, and V. A. Schmidt, Hysteresis properties of titano-magnetites: grain size and composition dependence, Phys. Earth Planet. Inter., 13, 260–267, 1977.CrossRefGoogle Scholar
  11. Dunlop, D. and O. Ozdemir, Rock magnetism. Fundamentals and frontiers, Cambridge University Press, 573 pp., 1997.CrossRefGoogle Scholar
  12. Gendler, T. S., V. P. Shcherbakov, M. J. Dekkers, A. K. Gapeev, S. K. Gribov, and E. McClelland, The lepidocrocite-maghemite-haematite re action chain-I. Acquisition of chemical remanent magnetization by maghemite, its magnetic properties and thermal stability, Geophys. J. Int., 160, 815–832, 2005.CrossRefGoogle Scholar
  13. Goguitchaichvili, A., L. M. Alva-Valdivia, J. Urrutia, J. Morales, and O. F. Lopes, On the reliability of Mesozoic Dipole Low: New absolute paleointensity results from Parana Flood Basalts (Brazil), Geophys. Res. Lett., 29, 331–334, 2002.CrossRefGoogle Scholar
  14. Goguitchaichvili, A., L. M. Alva-Valdivia, J. Rosas-Elguera, J. Urrutia-Fucugauchi, and J. Sole, Absolute geomagnetic paleointensity after the Cretaceous Normal Superchron and just prior the Cretaceous-Tertiary transition, J. Geophys. Res., 109, B01105, 2004.Google Scholar
  15. Hakobyan, V. T., Stratigraphy of Jurassic and Cretaceous sedimentary rocks of the north-eastern part of Zangezour, Academy of Science Ar menian SSR. Yerevan, 1963 (in Russian).Google Scholar
  16. Heunemann, C., D. Krasa, E. L. Gurevitch, H. C. Soffel, and V. Bachtadse, Directions and intensities of the Earth’s magnetic field during a reversal: results form the Permo-Triassic Siberian trap basalts, Russia, Earth Planet. Sci. Lett., 218, 197–213, 2004.CrossRefGoogle Scholar
  17. Johnson, H. P. and R. T. Merrill, Low-temperature oxidation of a titanomagnetite and the implication for palaeomagnetism, J. Geophys. Res., 78, 4938–4949, 1973.CrossRefGoogle Scholar
  18. Juarez, M. T., L. Tauxe, J. S. Gee, and T. Pick, The intensity of the Earth’s magnetic field over the past 160 million years, Nature, 394, 878–881, 1998.CrossRefGoogle Scholar
  19. Khramov, A. N. ed., Paleomagnetic Directions and Paleomagnetic Poles: Data for USSR, Issue 3. Materials of the WDC-B, Moscow, 44 pp., 1975 (in Russian).Google Scholar
  20. Khramov, A. N., Paleomagnetic Directions and Paleomagnetic Poles; Data for USSR, Issue 6. Materials of the WDC-B, Moscow, 39 pp., 1986 (in Russian).Google Scholar
  21. Khramov, A. N., Paleomagnetic Directions and Paleomagnetic Poles; Data for USSR, Issue 7. Materials of the WDC-B, Moscow, 29 pp., 1989 (in Russian).Google Scholar
  22. Kobayashi, K., Crystallization or chemical remanent magnetization, Proc. Benedum Earth Magnetism Symp., University of Pittsburg, 107–112, 1962.Google Scholar
  23. Kosterov, A. A., M. Perrin, J. M. Glen, and R. S. Coe, Paleointensity of the Earth’s magnetic field in early Cretaceous time: the Parana basalt, Brazil, J. Geophys. Res., 103, 9739–9753, 1998.CrossRefGoogle Scholar
  24. McElhinny, M. W. and P. L. McFadden, Paleomagnetism: continents and oceans, Int. Geophys. Ser., 73, Academic, San Diego, Calif., 386 pp., 2000.Google Scholar
  25. McFadden, P. L. and M. W. McElhinny, Classification of reversal test in paleomagnetism, Geophys. J. Int., 103, 725–729, 1990.CrossRefGoogle Scholar
  26. Nguen, T. K. T., The substantiation of the reliability of the paleomagnetic data under the solving of the paleotectonic tasks, PhD Thesis disserta tion, Institute of Earth Physics, Moscow, 1978 (in Russian).Google Scholar
  27. Pechersky, D. M. and T. K. T. Nguen, Paleomagnetism of volcanites of the Ophiolite Series and Late Cretaceous Effusive Rocks of Armenia, Izv. Earth Phys., 14, 192–202, 1978.Google Scholar
  28. Perrin, M. and V. P. Shcherbakov, Paleointensity of the Earth’s Magnetic Field for the Past 400 Ma: Evidence for a Dipole Structure during the Mesozoic Low, J. Geomag. Geoelectr., 49, 601–614, 1997.CrossRefGoogle Scholar
  29. Perrin, M. and E. Schnepp, IAGA Paleointensity database: Distribution and quality of the data set, Phys. Earth Planet. Inter., 147, 255–67, 2004.CrossRefGoogle Scholar
  30. Perrin, M., M. Prevot, and E. A. Mankinen, Low Intensity of the Geomag netic Field in Early Jurassic Time, J. Geophys. Res., 96(B9), 14,197–14,210, 1991.CrossRefGoogle Scholar
  31. Perrin, M., E. Schnepp, and V. P. Shcherbakov, Paleointensity database updated, Eos Trans. AGU, 79, 1998.Google Scholar
  32. Prévot, M., M. E. Derder, M. McWilliams, and J. Thompson, Intensity of the Earth’s magnetic field: evidence for a Mesozoic dipole low, Earth Planet. Sci. Lett., 97, 129–139, 1990.CrossRefGoogle Scholar
  33. Ruiz, R. C., A. Goguitchaichvili, S. E. Geuna, L. M. Alva-Valdivia, J. Solé, and J. Morales, Early cretaceous absolute geomagnetic paleointensities from Córdoba Province (Argentina), Earth Planets Space, 58, 1333–1339, 2006.CrossRefGoogle Scholar
  34. Selkin, P. A. and L. Tauxe, Long-term variations in palaeointensity, Philos. Trans. R. Soc. Lond. A, 358, 1065–1088, 2000.CrossRefGoogle Scholar
  35. Shcherbakov, V. P. and N. K. Sycheva, On the Variation in the Geomag netic Dipole over the Geologocal History of the Earth, Izv. Phys. Solid Earth, 42(3), 201–206, 2006.CrossRefGoogle Scholar
  36. Shcherbakov, V. P., B. E. Lamash, and N. K. Sycheva, Monte-Carlo mod eling of TRM and CRM acquisition and comparison of their properties in an ensemble of interacting SD grains, Geophys. Res. Lett., 23(20), 2827–2830, 1996.CrossRefGoogle Scholar
  37. Shcherbakov, V. P., V. V. Shcherbakova, Y. K. Vinogradov, and F. Heider, Thermal stability of pTRMs created from different magnetic states, Phys. Earth Planet. Inter., 126(1–2), 59–73, 2001.CrossRefGoogle Scholar
  38. Shcherbakova, V. V., V. P. Shcherbakov, and F. Heider, Properties of partial thermoremanent magnetization in PSD and MD magnetite grains, J. Geophys. Res., 105(B1), 767–782, 2000.CrossRefGoogle Scholar
  39. Shcherbakova, V. V., V. P. Shcherbakov, V. V. Vodovozov, and N. K. Sycheva, Paleointensity at the Permian-Triassic Boundary and in the Late Permian, Izv. Phys. Solid Earth, 41(11), 931–944, 2005.Google Scholar
  40. Shcherbakova, V. V., B. Z. Asanidze, V. P. Shcherbakov, and G. V. Zhidkov, Geomagnetic Field Paleointensity in the Cretaceous from Upper Cretaceous Rocks of Georgia, Izv. Phys. Solid Earth, 43(11), 951–959, 2007.CrossRefGoogle Scholar
  41. Shmidt, A. I., H. H. Tonakanyan, A. S. Avanesyan et al., Compiling of predictive-metallogenic map of northern part of Armenia at scale 1:50 000, lists K-38-115 B,G,V-b,V-g, K-38-116 A-v,B-a, Summary report, Armenian Geological Funds, Yerevan, 1982 (in Russian).Google Scholar
  42. Smirnov, A. V. and J. A. Tarduno, Thermochemical remanent magnetiza tion in Precambria rocks Are we sure the geomagnetic field was weak?, J. Geophys. Res., 110, B06103, doi:10.1029/2004JB003445, 2005.Google Scholar
  43. Solodovnikov, G. M., Palaeointensity of the Early Triassic geomagnetic field, Izv. Phys. Solid Earth, 30, 815–821, 1995.Google Scholar
  44. Solodovnikov, G. M., Determination of the geomagnetic field intensity in the Santonian-Coniacian (Upper Cretaceous) from an Effusive Section in Azerbaijan, Izv. Phys. Solid Earth, 87, 600–606, 2001.Google Scholar
  45. Stacey, F. D. and S. K. Banerjee, The Physical Principles of Rock Mag netism, 195 pp., Elsevier, New York, 1974.Google Scholar
  46. Tarduno, J. A. and R. D. Cottrell, Dipole strength and variation of the time-averaged reversing and nonreversing geodynamo based on Thellier analyses of single plagioclase crystals, J. Geophys. Res., 110, B11101, doi:10.1029/2005JB003970, 2005.Google Scholar
  47. Tauxe, L. and H. Staudigel, Strength of the geomagnetic field in the Cre taceous Normal Superchron: New data from submarine basaltic glass of the Troodos Ophiolite, Geochem. Geophys. Geosyst., 5, 26–41, 2004.Google Scholar
  48. Thellier, E. and O. Thellier, Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique, Ann. Geophys., 15, 285–376, 1959.Google Scholar
  49. Uspenskaya, E. A., L. A. Burshteyn, and E. Y. Leven, Compiling of geological-structural basis at scale 1:50 000 for predactive-metallogenic map of Zangezour-Kapan Ore Zone, Armenian Geological Funds, Yere van, 1984 (in Russian).Google Scholar
  50. Yoshihara, A. and Y. Hamano, Palaeointensities determined from the mid dle Cretaceous basalt in Liaoning Province, northeastern China, Phys. Earth Planet. Inter., 142, 49–59, 2004.CrossRefGoogle Scholar
  51. Yu, Y. and D. J. Dunlop, Palaeointensity determination on the late Pre-cambrian Tudor gabbro, Ontario, J. Geophys. Res., 106(B11), 26,331–26,348, 2001.CrossRefGoogle Scholar
  52. Zhu, R., Y. Pan, J. Shaw, D. Li, and Q. Li, Geomagnetic palaeointensity just prior to the Cretaceous normal superchron, Phys. Earth Planet. Inter., 128, 207–222, 2001.CrossRefGoogle Scholar
  53. Zhu, R., K. A. Hoffman, Y. Pan, R. Shi, and D. Li, Evidence for weak geomagnetic field intensity prior to the Cretaceous normal superchron, Phys. Earth Planet. Inter., 136, 187–199, 2003.CrossRefGoogle Scholar
  54. Zhu, R., C.-H. Lo, R. Shi, Y. Pan, G. Shi, and J. Shao, Is there a precur sor to the Cretaceous normal superchron? New paleointensity and age determination from Liaoning province, northeastern China, Phys. Earth Planet. Inter., 147, 117–126, 2004a.CrossRefGoogle Scholar
  55. Zhu, R., K. A. Hoffman, S. Nomade, P. R. Renne, R. Shi, Y. Pan, and G. Shi, Geomagnetic paleointensity and direct age determination of the ISEA (M0r?) chron, Earth Planet. Sci. Lett., 217, 285–295, 2004b.CrossRefGoogle Scholar
  56. Zhu, R., C.-H. Lo, R. Shi, G. Shi, Y. Pan, and J. Shao, Palaeointensities determined from the middle Cretaceous basalt in Liaoning Province, northeastern China, Phys. Earth Planet. Inter., 142, 49–59, 2004c.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB. 2009

Authors and Affiliations

  • V. V. Shcherbakova
    • 1
  • M. Perrin
    • 2
  • V. P. Shcherbakov
    • 1
  • V. E. Pavlov
    • 3
  • A. Ayvaz’yan
    • 4
  • G. V. Zhidkov
    • 1
  1. 1.Borok Geophysical Observatory, Schmidt Institute of Physics of the EarthRussian Academy of SciencesBorokRussia
  2. 2.Geosciences Montpellier, UMR CNRS/UM2 5243Université Montpellier IIFrance
  3. 3.Schmidt Institute of Physics of the Earth (IPE)Russian Academy of SciencesMoscowRussia
  4. 4.Departament of GeologyYerevan State UniversityArmenia

Personalised recommendations