Earth, Planets and Space

, Volume 60, Issue 9, pp 967–972 | Cite as

An experiment of predicting Total Electron Content (TEC) by fuzzy inference systems

Open Access


The Total Electron Content (TEC) is predicted by fuzzy inference systems for various station-satellite pairs. GPS data from the GRAZ, HFLK, LINZ, MOPI and UZHL permanent stations are processed in order to obtain the vertical total electron content (VTEC) using differenced carrier-smoothed code observations. The quality of the VTEC prediction was studied on 9 and 11 September 2005 (DOY 252 and 254). The predictions were computed for 5, 10 and 15 min intervals. The mean accuracies of predictions are about 0.1, 0.2 and 0.3 TECU for these time intervals. More than 98% of the VTEC is successfully recovered with the proposed prediction method.

Key words

GPS ionosphere VTEC prediction 


  1. Akyilmaz, O. and H. Kutterer, Prediction of earth rotation parameters by fuzzy inference systems, J. Geod., 78, 82–93, 2004.CrossRefGoogle Scholar
  2. Ciraolo, L., F. Azpilicueta, C. Brunini, A. Meza, and S. M. Radicella, Calibration errors on experimental slant total electron content (TEC) determined with GPS, J. Geod., 81, 111–120, 2007.CrossRefGoogle Scholar
  3. Dach, R., U. Hugentobler, P. Fridez, and M. Meindl, User manual of the Bernese GPS software version 5.0, Astronomical Institute, University of Bern, 2007.Google Scholar
  4. DRAO (Dominion Radio Astrophysical Observatory in Pentiction),, 2008.
  5. Estey, L. H. and C. M. Meertens, TEQC: The multi-purpose toolkit for GPS/GLONASS data, GPS Solutions, 3(1), 42–49, 1999.CrossRefGoogle Scholar
  6. Jang, J. S. R., ANFIS: adaptive-network-based fuzzy inference systems, IEEE Trans. Syst. Man. Cybernet, 23, 665–685, 1993.CrossRefGoogle Scholar
  7. Liu, Z. and Y. Gao, Ionospheric TEC predictions over a local area GPS reference network, GPS Solutions, 8, 23–29, 2004.CrossRefGoogle Scholar
  8. Liu, R., Z. Xu, J. Wu, S. Liu, B. Zang, and G. Wang, Preliminary studies on ionospheric forecasting in China and its surrounding area, J. Atmos. Solar-Terr. Phys., 67, 1129–1136, 2005.CrossRefGoogle Scholar
  9. NGDC (National Geophysical Data Center),, 2008.
  10. Oyeyemi, E. O., L. A. Mckinnell, and A. W. V. Poole, Near-real time foF2 predictions using neural networks, J. Atmos. Solar-Terr. Phys., 68, 1807–1818, 2006.CrossRefGoogle Scholar
  11. Popoola, A., S. Ahmad, and K. Ahmad, A Fuzzy-Wavelet method for analyzing non-stationary time series, in Proceedings of the 5th Int. Conference on Recent Advances in Soft Computing (RASC 2004), pp. 231–236, December 16–18, Notthingham, UK, 2004.Google Scholar
  12. Rideout, W. and A. Coster, Automated GPS processing for global total electron content, GPS Solutions, 10, 219–228, 2006.CrossRefGoogle Scholar
  13. Sardon, E. and N. Zarraoa, Estimation of total electron content using GPS data: How stable are the differential satellite and receiver instrumental biases?, Radio Sci., 32(5), 1899–1910, 1997.CrossRefGoogle Scholar
  14. Takagi, T. and M. Sugeno, Fuzzy identification of systems and its application to modeling and control, IEEE Trans. Syst. Man. Cybernet, 15, 116–132, 1985.CrossRefGoogle Scholar
  15. Wild, U., Ionosphere and geodetic satellite systems: Permanent GPS tracking data for modelling and monitoring, Achtundvierzigster Band, 48, 1994.Google Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2008

Authors and Affiliations

  1. 1.Department of Geodesy and Photogrammetry EngineeringIstanbul Technical UniversityMaslak-IstanbulTurkey
  2. 2.Department of Geodesy and Photogrammetry EngineeringYildiz Technical UniversityBesiktas-IstanbulTurkey

Personalised recommendations