Earth, Planets and Space

, Volume 60, Issue 5, pp 453–461 | Cite as

InSAR-based mapping of surface subsidence in Mokpo City, Korea, using JERS-1 and ENVISAT SAR data

  • Sang-Wan Kim
  • Shimon Wdowinski
  • Timothy H. Dixon
  • Falk Amelung
  • Joong-Sun Won
  • Jeong Woo Kim
Open Access
Article

Abstract

Mokpo City, located on the southwestern coast of the Korean Peninsula, has been built on one of the largest areas of reclaimed coastal land in Korea. This reclaimed land is currently experiencing significant ground subsidence due to soil consolidation. We have estimated the subsidence rate of Mokpo City (8 × 8 km) using the synthetic aperture radar interferometry (InSAR) and InSAR permanent scatterer (PSInSAR) techniques to analyze 26 JERS-1 SAR images acquired between 1992 and 1998 and six ENVISAT ASAR images acquired in 2004–2005. Mean subsidence velocity, which was clearly related to reclaimed land, was computed from the JERS-1 PSInSAR analysis. The results indicate a continuous and significant subsidence at three sites (Dongmyung, Hadang and Wonsan), where the subsidence velocity has reached more than 5–7 cm/yr in the area of maximum subsidence. The subsidence rate was found to have decreased in Wonsan and Hadang between 1992 and 1998, while it remained steady or increased in Dongmyung during the same period. The subsidence extended to the period of 2004–2005, and the subsidence rate predicted by the JERS-1 PSInSAR analysis using a linear model was confirmed by the ENVISAT ASAR InSAR results. Our results show that InSAR/PSInSAR-based subsidence maps are useful for the long-term monitoring of soil consolidation and for defining risk zones in coastal reclaimed regions.

Key words

SAR subsidence reclaimed land PSInSAR JERS-1 ENVISAT 

References

  1. Amelung, F., D. L. Galloway, J. W. Bell, H. A. Zebker, and R. J. Laczniak, Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation, Geology, 27, 483–486, 1999.CrossRefGoogle Scholar
  2. Burgmann, R., P. A. Rosen, and E. J. Fielding, Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation, Ann. Rev. Earth Planet. Sci., 28, 169–209, 2000.CrossRefGoogle Scholar
  3. Chen, C. W. and H. A. Zebker, Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization, J. Optical Soc. Am. a-Optics Image Sci. Vision, 18, 338–351, 2001.CrossRefGoogle Scholar
  4. Colesanti, C, A. Ferretti, F. Novali, C. Prati, and F. Rocca, SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique, IEEE Trans. Geosci. Remote Sensing, 41, 1685–1701, 2003.CrossRefGoogle Scholar
  5. Daito, K., A. Ferretti, S. Kuzuoka, F Novali, P. Panzeri, and F Rocca, L-bandPS analysis: JERS-1 results and TerraSAR-Lpredictions, inFringe 2003 Wrokshop, ESRIN, Frascati, Italy, 2003.Google Scholar
  6. Dixon, T. H., F Amelung, A. Ferretti, F Novali, F Rocca, R. Dokka, G. Sella, S. W. Kim, S. Wdowinski, and D. Whitman, Subsidence and flooding in New Orleans, Nature, 441, 587–588, 2006.CrossRefGoogle Scholar
  7. Doornbos, E., R. Scharroo, H. Klinkrad, R. Zandbergen, and B. Fritsche, Improved modelling of surface forces in the orbit determination of ERS and ENVISAT, Can. J. Remote Sensing, 28, 535–543, 2002.CrossRefGoogle Scholar
  8. Ferretti, A., C. Prati, and F Rocca, Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry, IEEE Trans. Geosci. Remote Sensing, 38, 2202–2212, 2000.CrossRefGoogle Scholar
  9. Ferretti, A., C. Prati, and F Rocca, Permanent scatterers in SAR interferometry, IEEE Trans. Geosci. Remote Sensing, 39, 8–20, 2001.CrossRefGoogle Scholar
  10. Fruneau, B. and F Sarti, Detection of ground subsidence in the city of Paris using radar interferometry: isolation of deformation from atmospheric artifacts using correlation, Geophys. Res. Lett., 27, 3981–3984, 2000.CrossRefGoogle Scholar
  11. Galloway, D. L., D. R. Jones, and S. E. Ingebritsen, Land subsidence in the United States, In. Denver: USGS, 1999.Google Scholar
  12. Hilley, G. E., R. Burgmann, A. Ferretti, F Novali, and F Rocca, Dynamics of slow-moving landslides from permanent scatterer analysis, Science, 304, 1952–1955, 2004.CrossRefGoogle Scholar
  13. Hu, R. L., Z. Q. Yue, L. C. Wang, and S. J. Wang, Review on current status and challenging issues of land subsidence in China, Eng. Geol., 76, 65–77, 2004.CrossRefGoogle Scholar
  14. Kim, S. W and J. S. Won, Measurements of soil compaction rate by using JERS-1 SAR and a prediction model, IEEE Trans. Geosci. Remote Sensing, 41, 2683–2686, 2003.CrossRefGoogle Scholar
  15. Kim, S. W, C. O. Kim, J. S. Won, and J. W Kim, Measurement of Ground Subsidence in Mokpo Area from Radar Intrerferometry (Korean Ed.), Econ. Environ. Geol., 38, 381–394, 2005a.Google Scholar
  16. Kim, S. W., C. W Lee, K. Y. Song, K. D. Min, and J. S. Won, Application of L-band differential SAR interferometry to subsidence rate estimation in reclaimed coastal land, Int. J. Remote Sensing, 26, 1363–1381, 2005b.CrossRefGoogle Scholar
  17. Lanari, R., O. Mora, M. Manunta, J. J. Mallorqui, P. Berardino, and E. Sansosti, A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms, IEEE Trans. Geosci. Remote Sensing, 42, 1377–1386, 2004.CrossRefGoogle Scholar
  18. Massonnet, D. and K. L. Feigl, Radar interferometry and its application to changes in the earth’s surface, Rev. Geophys., 36, 441–500, 1998.CrossRefGoogle Scholar
  19. Massonnet, D., M. Rossi, C. Carmona, F Adragna, G. Peltzer, K. Feigl, and T. Rabaute, The Displacement Field Of The Landers Earthquake Mapped By Radar Interferometry, Nature, 364, 138–142, 1993.CrossRefGoogle Scholar
  20. Muller, J.-P. and D. Backes, Quality assessment of X-and C-SRTM with ERS-tandem DEMs over 4 European CEOS WGCV test sites, in Fringe 2003 Workshop, Frascati, Italy, 2003.Google Scholar
  21. Strozzi, T., U. Wegmuller, C. L. Werner, A. Wiesmann, and V. Spreckels, JERS SAR interferometry for land subsidence monitoring, IEEE Trans. Geosci. Remote Sensing, 41, 1702–1708, 2003.CrossRefGoogle Scholar
  22. Tan, T. S., T. Inoue, and S. L. Lee, Hyperbolic Method for Consolidation Analysis, J. Geotechn. Eng.-Asce, 117, 1723–1737, 1991.CrossRefGoogle Scholar
  23. Teatini, P., L. Tosi, T. Strozzi, L. Carbognin, U. Wegmuller, and F Rizzetto, Mapping regional land displacements in the Venice coastland by an integrated monitoring system, Remote Sensing Environ., 98, 403–413, 2005.CrossRefGoogle Scholar
  24. Zebker, H. A., P. A. Rosen, R. M. Goldstein, A. Gabriel, and C. L. Werner, On the Derivation of Coseismic Displacement-Fields Using Differential Radar Interferometry—the Landers Earthquake, J. Geophys. Res.-Solid Earth, 99, 19617–19634, 1994.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2008

Authors and Affiliations

  • Sang-Wan Kim
    • 1
    • 2
  • Shimon Wdowinski
    • 1
  • Timothy H. Dixon
    • 1
  • Falk Amelung
    • 1
  • Joong-Sun Won
    • 3
  • Jeong Woo Kim
    • 4
    • 2
  1. 1.Division of Marine Geology and GeophysicsUniversity of MiamiMiamiUSA
  2. 2.Department of Geoinformation EngineeringSejong UniversitySeoulKorea
  3. 3.Department of Earth System SciencesYonsei UniversitySeoulKorea
  4. 4.Department of Geomatics EngineeringUniversity of CalgaryCalgaryCanada

Personalised recommendations