Earth, Planets and Space

, Volume 60, Issue 4, pp 425–431 | Cite as

The absorption-peak map of Mare Serenitatis obtained by a hyper-spectral telescope

Open Access
Article

Abstract

The Mg-number [Mg#=atomic Mg/(Mg+Fe)] serves as an important petrologic discriminator when analyzing and understanding lunar rocks. Variations in the Mg# shift the wavelength of the absorption spectra of ferrous iron, which peak at around 1000 nm. Based on the image cubes of the Moon obtained by the Advanced Lunar Imaging Spectrometer (ALIS), we detected the shift in the absorption spectra of ferrous iron and built up an absorption-peak map of Mare Serenitatis. The wavelength of the absorption peak shows an 11-nm shift in Mare Serenitatis. Since the degree of space weathering can be considered to be almost the same as that within the same lava unit and Ca content cannot change without changing Mg# during magma differentiation, these shifts of the peak absorption spectra suggest that there is Mg# variation in at least the same lava unit.

Key words

Moon hyper-spectral telescope Mg-number 

References

  1. Basaltic Volcanism Study Project (BVSP), Basaltic Volcanism on the terrestrial planets, 1286 pp, Pergamon Press Inc., New York, USA, 1981.Google Scholar
  2. Blinder, A., Lunar Prospector: Overview, Science, 281, 1475–1476, 1998.CrossRefGoogle Scholar
  3. Boyce, M. J., Ages of flow units in the lunar nearside maria based on Lunar Orbiter IV photographs, Proc. Lunar Planet. Sci. Conf., 7, 2717–2728, 1976.Google Scholar
  4. Carr, M. H., Geologic map of the Mare Serenitatis region of the moon, Geological survey, Map I-489, 1966.Google Scholar
  5. Hazen, R. M., P. M. Bell, and H. K. Mao, Effects of compositional variation on absorption spectra of lunar pyroxenes, Proc. Lunar Planet. Sci. Conf., 9, 2914–2934, 1978.Google Scholar
  6. Howard, K. A., M. H. Carr, and W. R. Muehlberger, Basalt stratigraphy of southern Mare Serenitatis, Apollo 17 preliminary science report, Washington D.C., U.S. Government Printing Office, NASA SP-330, 29–1–29–12, 1973.Google Scholar
  7. Kodama, S. and Y. Yamaguchi, Lunar mare volcanism in the eastern nearside region derived from Clementine UV/VIS data, Meteor. Planet. Sci., 38, 1461–1484, 2003.CrossRefGoogle Scholar
  8. Lawrence, D. J., W. C. Feldman, R. C. Elphic, R. C. Little, T. H. Prettyman, S. Maurice, P. G. Lucey, and A. B. Binder, Iron abundances on the lunar surface as measured by the Lunar Prospector Gamma-Ray and Neutron Spectrometers, J. Geophys. Res., 107(E12), 5130, doi:10.1029/2001JE001530, 2002.CrossRefGoogle Scholar
  9. Lucey, P. G., G. J. Taylor, and E. Maralet, Abundance and distribution of iron on the Moon, Science, 268, 1150–1153, 1995.CrossRefGoogle Scholar
  10. Lucey, P. G., D. T. Blewett, and B. R. Hawke, Mapping FeO and TiO2 content of the lunar surface with multi-spectral imagery, J. Geophys. Res., 103, 3679–3699, 1998.CrossRefGoogle Scholar
  11. Lucey, P. G., D. T. Blewett, and B. L. Jolliff, Lunar iron and titanium abundance algorithms based on final processing of Clementine ultravioletvisible images, J. Geophys. Res., 105, 20297–20305, 2000.CrossRefGoogle Scholar
  12. Nozette, S., P. Rustan, L. P. Pleasance, D. M. Horan, P. Regeon, E. M. Shoemaker, P. D. Spudis, C. H. Acton, D. N. Baker, J. E. Blamont, B. J. Buratti, M. P. Corson, M. E. Davies, T. C. Duxbury, E. M. Eliason, B. M. Jakosky, and J. F. Kordas, The Clementine mission to the Moon: Scientific overview, Science, 266, 1835–1839, 1994.CrossRefGoogle Scholar
  13. Pieters, C. M., Mare basalt types on the front side of the Moon: A summary of spectral reflectance data, Lunar Planet. Sci. Conf., 9, 2825–2849, 1978.Google Scholar
  14. Pieters, C. M. and A. J. Englert, Remote Geochemical Analysis: Elemental and Mineralogical Composition, Cambridge, 594pp, The Press Syndicate of the University of Cambridge, Cambridge CB2 2RU, United Kingdom, 1993.Google Scholar
  15. Prettyman, T. H., W. C. Feldman, D. J. Lawrence, G. W. McKinney, A. B. Binder, R. C. Elphic, O. M. Gasnault, S. Maurice, and K. R. Moore, Library least squares analysis of Lunar Prospector gamma-ray spectra, 33rd Lunar Planet. Sci. Conf., Abstract #2012, 2002.Google Scholar
  16. Saiki, K., R. Nakamura, F. Ichikawa, H. Akiyama, and H. Takeda, Development of a telescope imaging spectrometer for the moon, Lunar Planet. Sci. Conf., XXXV #148, 2004.Google Scholar
  17. Sasaki, S., K. Nakamura, Y. Hamabe, E. Kurahashi, and T. Hiroi, Production of iron nanoparticles by laser irradiation in a simulation of lunarlike space weathering, Nature, 410, 555–557, 2001.CrossRefGoogle Scholar
  18. Scheaffer, G. A. and O. A. Scheaffer, 39Ar-40Ar ages of lunar rocks, Lunar Planet. Sci. Conf., 8, 2253–2300, 1977.Google Scholar
  19. Staid, M. I. and C. M. Pieters, Mineralogy of the last lunar basalts: Results from Clementine, J. Geophys. Res, 106(E11), 27,887–27,900, 2001.CrossRefGoogle Scholar
  20. Stolper, E., Experimental petrology of eucritic meteorites, Geochem. Cosmochim., 41, 587–611, 1977.CrossRefGoogle Scholar
  21. Tera, F., D. A. Papanastassiou, and G. J. Wasseburg, Isotopic evidence for a terminal lunar cataclysm, Earth Planet. Sci. Lett., 22, 1–21, 1974.CrossRefGoogle Scholar
  22. Wilhelms, D. E. and F. M. McCauley, Geologic map of the nearside of the Moon, U. S. Geological Survey, Map I-703, Washington D.C., 1971.Google Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2008

Authors and Affiliations

  1. 1.Department of Earth and Space Science, Graduate School of ScienceOsaka UniversityOsakaJapan

Personalised recommendations