Earth, Planets and Space

, Volume 59, Issue 7, pp 775–783 | Cite as

Paleomagnetism of the Eastern Alkaline Province (Mexico): contribution to the time-averaged field global database and geomagnetic instability time scale

  • Avto Goguitchaichvili
  • Marie Petronille
  • Bernard Henry
  • Luis Alva Valdivia
  • Juan Morales
  • Jaime Urrutia-Fucugauchi
Open Access


We report a detailed paleomagnetic and rock-magnetic study of 19 independent lava flows belonging to the Eastern Alkaline Province (EAP) in Mexico. In total, 162 oriented samples were collected in four areas (Sierra de Tantima-Alamo, Tlanchinol, Chiconquiaco-Palma Sola and Poza Rica). All sites analyzed in this study were previously dated by means of the unspiked K-Ar geochronological method (Ferrari et al., J. Volcanol. Geotherm. Res., 146, 284–306, 2005) and span from 14.6 to 1.5 Ma. Rock-magnetic experiments point to simple magnetic mineralogy. In most cases, the remanence is carried by Ti-poor titanomagnetite of pseudosingle-domain grain size. In a few cases, Ti-rich titanomagnetites are responsible for the magnetization. The characteristic paleodirections are successfully isolated for all of the studied units. The mean paleodirection, discarding two intermediate polarity sites, is D=359.5°, I=32.9°, n=17, k=30, α95=6.7°. This direction is practically undistinguishable from the expected Mio-Pliocene paleodirections, as derived from reference poles for the North American polar wander curve, and is in agreement with the previously reported directions from the western Trans-Mexican Volcanic Belt. This suggests that no major tectonic rotation occurred in studied area since the middle Miocene to Present. The paleosecular variation is estimated through the study of the scatter of virtual geomagnetic poles, giving SF=12.7 with SU=16.5 and SL=10.3 (upper and lower limits, respectively). These values are consistent with those predicted by the latitude-dependent variation model of McFadden et al. (Geophys. Res., 93, 11583–11588, 1991) for the last 5 Myr. Eleven sites yielded reverse magnetic polarity, six are normally magnetized and two lava flows provided apparently intermediate paleodirections. An interesting feature of the paleomagnetic record obtained from EAP volcanics is that two independent lava flows, dated as 2.04±0.04 and 1.97±0.04 Ma, respectively, both yield normal paleodirections during the reverse Matuyama period. These sites were apparently formed during the Réunion geomagnetic event worldwide observed.

Key words

Paleomagnetism paleosecular variation geomagnetic reversal volcanic province Mexico 


  1. Baksi, A. K., A. K. Hoffman, and C. Mcwilliams, Testing the accuracy of the geomagnetic polarity time-scale (GPTS) at 2–5 Ma, utilizing 40Ar/39Ar incremental heating data on whole-rock basalts, Earth Planet. Sci. Lett., 118, 135–144, 1993.CrossRefGoogle Scholar
  2. Baksi, A. K. and A. K. Hoffman, On the Age and Morphology of the Réunion Event, Geophys. Res. Lett., 27, 2997–3000, 2000.CrossRefGoogle Scholar
  3. Besse, J. and V. Courtillot, Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr, J. Geophys. Res., 107(B11), 1029/2000JB000050, 2002.Google Scholar
  4. Bohnel, H. and J. F.W. Negendank, Preliminary results of palaeomagnetic measurements of Tertiary and Quaternary igneous rocks from the eastern part of the Trans-Mexican Volcanic Belt, Geofis. Int., 20(3), 235–248, 1981.Google Scholar
  5. Bohnel, H., J. Urrutia-Fucugauchi, and E. Herrero-Bervera, Paleomagnetic data from central Mexico and their use for paleosecular variation studies, Phys. Earth Planet. Inter., 64, 224–236, 1990.CrossRefGoogle Scholar
  6. Carlut, J., J. P. Valet, X. Quidelleur, V. Curtillot, T. Kidane, Y. Gallet, and P. Y. Gillot, Paleointensity across the Réunion Event in Ethiopia, Earth Planet. Sci. Lett., 170, 17–34, 1999.CrossRefGoogle Scholar
  7. Chamalaun, F. H. and I. McDougall, Dating geomagnetic polarity epochs in Réunion, Nature, 210, 1212, 1966.CrossRefGoogle Scholar
  8. Coe, R., S. Singer, B. S. Pringle, and X. Zhao, Matuyama-Brunhes reversal and Kamikatsura event on Maui: paleomagnetic directions, 40Ar/39Ar ages and implications, Earth Planet. Sci. Lett., 222, 667–684, 2004.CrossRefGoogle Scholar
  9. Conte, G., J. Urrutia-Fucugauchi, A. Goguitchaichvili, and J. Morales, Low-latitude paleosecular variation and the time-averaged field during the late Pliocene and Quaternary—Paleomagnetic study of the Michoacan-Guanajuato volcanic field, Central Mexico, Earth Planets Space, 58, 1359–1371, 2006.CrossRefGoogle Scholar
  10. Cox, A., Lengths of geomagnetic polarity intervals, J. Geophys. Res., 73, 3247–3260, 1968.CrossRefGoogle Scholar
  11. Cox, A., Confidence limits for the precision parameter k, Geophys. J. R. Astr. Soc., 17, 545–549, 1969.CrossRefGoogle Scholar
  12. Day, R., M. Fuller, and V. A. Schmidt, Hysteresis properties of titanomagnetites: Grain-size and compositional dependence, Phys. Earth Planet. Inter., 13, 260–267, 1977.CrossRefGoogle Scholar
  13. Dunlop, D. J., Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc), Theoretical curves and tests using titanomagnetite data, J. Geophys. Res., 107, doi:10.1029/2001JB000486, 2002.Google Scholar
  14. Dunlop, D. and Ö. Özdemir, Rock-Magnetism, Fundamentals and Frontiers, Cambridge University Press, 573 pp, 1997.CrossRefGoogle Scholar
  15. Ferrari, L., T. Tagami, M. Eguchi, M. T. Orozco-Esquivel, C. M. Petrone, J. Jacobo- Albarrán, and M. López-Martínez, Geology, geochronology and tectonic setting of late Cenozoic volcanism along the Southwestern Gulf of Mexico: The eastern alkaline province revised, J. Volcanol. Geotherm. Res., 146, 284–306, 2005.CrossRefGoogle Scholar
  16. Gómez-Tuena, A., A. LaGatta, C. Langmuir, S. Goldstein, F. Ortega-Gutiérrez, and G. Carrasco-Núñnez, Temporal Control of Subduction Magmatism in the Eastern Trans-Mexican Volcanic Belt: Mantle Sources, Slab Contributions and Crustal Contamination, Geochem. Geophys. Geosyst., 4(8), 8912, doi:10.1029/2003GC000524, 2003.CrossRefGoogle Scholar
  17. Gonzalez, S., G. Sherwood, H. Bohnel, and E. Schnepp, Paleosecular variation in Central Mexico over last 30,000 years: the record from lavas, Geophys. J. Int., 130, 201–219, 1997.CrossRefGoogle Scholar
  18. Gradstein, F., J. Ogg, and A. G. Smith, Geologic Time Scale 2004, Cambridge University Press, Cambridge 2004.CrossRefGoogle Scholar
  19. Herrero-Bervera, E., J. Urrutia-Fucugauchi, A. Martin del Pozzo, H. Bohnel, and J. Guerrero, Normal amplitude Brunhes paleosecular variation at low-latitudes: A paleomagnetic record from the Trans-Mexican Volcanic Belt, Geophys. Res. Lett., 13, 1442–1445, 1986.CrossRefGoogle Scholar
  20. Horng, C. S., M. Y. Lee, H. Palike, K. Y. Wei, W. T. Liang, Y. Iizuka, and M. Torii, Astronomically calibrated ages for geomagnetic reversals within the Matuyama chron, Earth Planets Space, 54, 679–690, 2002.CrossRefGoogle Scholar
  21. Kidane, T., J. Carlut, V. Courtiullot, Y. Gallet, X. Quidelleur, P. Gillot, and T. Haile, Paleomagnetic and geochronological identification of the Réunion subchron in Ethiopian Afar, J. Geophys. Res., 104, 10405–10419, 1999.CrossRefGoogle Scholar
  22. Kirschvink, J. L., The least-square line and plane and analysis of palaeomagnetic data, Geophys. J. R. Astron. Soc., 62, 699–718, 1980.CrossRefGoogle Scholar
  23. Lanphere, M. A., D. E. Champion, R. L. Christiansen, and T. Obradovich, Revised ages for tuffs of the Yellowstone, Geol. Soc. Am. Bull., 114, 559–568, 2002.CrossRefGoogle Scholar
  24. Lawrence, K. P., C. G. Constable, and C. L. Johnson, Paleosecular variation and the average geomagnetic field at ±20° latitude, Geochem. Geophys. Geosyst., 7, Q07007, 2006.Google Scholar
  25. Le Goff, M., Description d’un appareil à désaimanter par champs alternatifs; élimination de l’aimantation rémanente anhystérétique parasite, Can. J. Earth Sci., 22, 1740–1747, 1985.CrossRefGoogle Scholar
  26. McDougall, I., F. H. Brown, T. E. Cerling, and J. W. Hillehouse, A reappraisal of The geomagnetic polarity time scale to 4 Ma using data from the Turkana basin, East Africa, Geophys. Res. Lett., 19, 2349–2352, 1992.CrossRefGoogle Scholar
  27. McFadden, P., T. Merrill, and W. McElhinny, Dipole/quadrupole family modeling of paleosecular variation, J. Geophys. Res., 93, 11583–11588, 1988.CrossRefGoogle Scholar
  28. McFadden, P. L., R. Merrill, M. W. McEllhinny, and S. Lee, Reversals of the Earth’s magnetic field and temporal variations of the dynamo families, J. Geophys. Res., 96, 3923–3933, 1991.CrossRefGoogle Scholar
  29. Mejia, V., H. Bohnel, M. A. Ortega-Rivera, J. Lee, and J. Aranda-Gomez, Paleosecular variation and time-averaged field recorded in Late Pliocene-Holocene lava flows from Mexico, Geochem. Geophys. Geosyst., 6, doi:10.1029/2004GC000871, 2005.Google Scholar
  30. Petronille, M., A. Goguitchaichvili, B. Henry, L. Alva-Valdivia, J. Rosas-Elguera, M. Rodríguez Ceja, and M. Calvo-Rathert, Paleomagnetism of Ar-Ar dated lava flows from the Ceboruco-San Pedro volcanic field (western Mexico): Evidence for the Matuyama-Brunhes transition precursor and a fully reversed geomagnetic event in the Brunhes chron, J. Geophys. Res., 110, b08101, doi:10.1029/2004jb003321, 2005.Google Scholar
  31. Prévot, M., R. S. Mainkinen, S. Grommé, and A. Lecaille, High paleointensity of the geomagnetic field from thermomagnetic studies on rift valley pillow basalts from the middle Atlantic ridge, J. Geophys. Res., 88, 2316–2326, 1983.CrossRefGoogle Scholar
  32. Robin, C., Présence simultanée de magmatismes de significations tectoniques opposées dans l’Est du Mexique, Bull. Soc. Geol. Fr., 18, 1637–1645, 1976.CrossRefGoogle Scholar
  33. Robin, C., Relations volcanologie-magmatologie-géodynamique: application au passage entre volcanismes alcalin et andésitique dans le sud Mexicain (Axe Trans-Mexicain et Province Alcaline Orientale), Ph.D. Thesis, Annales Scientifiques de l’Université de Clermont-Ferrand II France, 503 p, 1982.Google Scholar
  34. Rodriguez-Ceja, M., A. Goguitchaichvili, M. Calvo-Rathert, J. Morales-Contreras, L. Alva-Valdivia, J. Rosas Elguera, and H. D. Granados, Paleomagnetism of the Pleistocene Tequila Volcanic Field (Western Mexico), Earth Planets Space, 58, 1349–1358, 2006.CrossRefGoogle Scholar
  35. Roger, S., C. Coulon, N. Thouveny, G. Feraud, A. Van Velzen, S. Fauquette, J. J. Cocheme, M. Prevot, and K. L. Verosub, 40Ar/39Ar dating of a tephra layer in the Pliocene Senèze maar lacustrine sequence (French Massif Central): constraint on the age of the Réunion-Matuyama transition and implications on paleoenvironmental archives, Earth Planet. Sci. Lett., 183, 431–440, 2000.CrossRefGoogle Scholar
  36. Ruiz-Martinez., V. C., M. L. Osete, and R. Vegas, Palaeomagnetism of Late Miocene to Quaternary volcanics from the eastern segment of the Trans-Mexican Volcanic Belt, Tectonophysics, 318, 217–233, 2000.CrossRefGoogle Scholar
  37. Singer, B. S., M. K. Relle, K. A. Hoffman, A. Battle, C. Laj, H. Guillou, and J. C. Carracedo, Ar/Ar ages from transitionally magnetized lavas on La Palma, Canary Island, and the geomagnetic instability timescale, J. Geophys. Res., 107(B11), doi:10.1029/2001JB001613, 2002.Google Scholar
  38. Steele, K. W., Paleomagnetic constraints on the volcanic history of Iztaccihuatl, Geof. Int., 24, 159–167, 1985.Google Scholar
  39. Sueishi, T., T. Sato, N. Kawai, and K. Kobayashi, Short geomagnetic episodes in the Matuyama epoch, Phys. Earth Planet. Inter., 19, 1–11, 1979.CrossRefGoogle Scholar
  40. Urrutia-Fucugauchi, J., Constraints on Brunhes low-latitude paleosecular variation-Iztaccíhuatl stratovolcano, basin of Mexico, Geof. Int., 34, 253–262, 1994.Google Scholar
  41. Urrutia-Fucugauchi, J., Comments on a new method to determine paleosecular variation, Phys. Earth Planet. Inter., 102, 295–300, 1997.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2007

Authors and Affiliations

  • Avto Goguitchaichvili
    • 1
    • 2
  • Marie Petronille
    • 3
  • Bernard Henry
    • 3
  • Luis Alva Valdivia
    • 1
  • Juan Morales
    • 1
  • Jaime Urrutia-Fucugauchi
    • 1
  1. 1.Laboratorio de Paleomagnetismo y Geofíisica Nuclear, Instituto de GeofísicaUniversidad Nacional Autónoma de MéxicoMéxicoMexico
  2. 2.Laboratorio Interinstitucional de Magnetismo Natural, Instituto de Geofisica, sede MichoacánUniversidad Nacional Autónoma de MéxicoMexico
  3. 3.PaléomagnétismeIPGP and CNRSSaint Maur cedexFrance

Personalised recommendations