Earth, Planets and Space

, Volume 59, Issue 7, pp 675–684 | Cite as

Geomagnetic jerks from the Earth’s surface to the top of the core

  • Aude Chambodut
  • Céline Eymin
  • Mioara Mandea
Open Access


Rapid changes in the magnetic field characterised by an abrupt change in the secular variation have been named “secular variation impulses” or “geomagnetic jerks”. Three of these events, around 1968, 1978 and 1990, occurred during the time-span covered by the comprehensive model CM4 (Sabaka et al., 2002, 2004). This model, providing the best temporal resolution between 1960 and 2002 as well as a fine separation of the different magnetic sources, can be used to study rapid phenomena of internal origin. In order to analyse these events all over the globe, synthetic time series were obtained from the CM4 model between 1960–2002. Geomagnetic jerks are detected here as a rapid movement of the zero isoline of the second field derivative. Analysis of the area swept out by this isoline as a function of time allows us to map the spatial extent of jerks though time, and to identify an event around 1985 that is localized in the Pacific area. At the core surface, we compute the fluid flows under the frozen-flux and tangentially geostrophic assumptions. The flows do not exhibit any special pattern at jerk times, but instead show a smooth temporal evolution over the whole time period. However, the mean amplitude of the dynamical pressure associated with these flows present maxima at each jerk occurrence and helps to confirm the identification of a jerk in 1985.

Key words

Geomagnetic jerks magnetic models core surface flows core dynamics 


  1. Achache, J., V. Courtillot, J. Ducruix, and J.-L. Le Mouël, The late 1960’s secular variation impulse: Further constraints on deep mantle conductivity, Phys. Earth Planet. Inter., 23, 72–75, 1980.CrossRefGoogle Scholar
  2. Alexandrescu, M., D. Gibert, G. Hulot, J.-L. Le Mouël, and G. Saracco, Detection of geomagnetic jerks using wavelet analysis, J. Geophys. Res., 100(B7), 12557–12572, 1995.CrossRefGoogle Scholar
  3. Alexandrescu, M., D. Gibert, G. Hulot, J.-L. Le Mouël, and G. Saracco, Worldwide wavelet analysis of geomagnetic jerks, J. Geophys. Res., 101, 21975–21994, 1996.CrossRefGoogle Scholar
  4. Alldredge, L. R., A discussion of impulses and jerks in the geomagnetic Field, J. Geophys. Res., 89, 4403–4412, 1984.CrossRefGoogle Scholar
  5. Alldredge, L. R., More on the alleged 1970 geomagnetic jerk, Phys. Earth Planet. Inter., 39, 255–264, 1985.CrossRefGoogle Scholar
  6. Amit, H. and P. Olson, Helical core flow from geomagnetic secular variation, Phys. Earth Planet. Inter., 147, 1–25, 2004.CrossRefGoogle Scholar
  7. Backus, G. E., Application of mantle filter theory to the magnetic jerk of 1969, Geophys. J. R. Astron. Soc, 74, 713–746, 1983.Google Scholar
  8. Backus, G. E. and J.-L. Le Mouël, The region on the core-mantle boundary where a geostrophic velocity field can be determined from frozen flux magnetic data, Geophys. J. R. Astr. Soc, 85, 617–628, 1986.CrossRefGoogle Scholar
  9. Backus, G. E. and J.-L. Le Mouël, The region on the core-mantle boundary where a geostrophic velocity field can be determined from frozen-flux magnetic data-Addendum, Geophys. J. R. Astron. Soc, 88, 321–322, 1987.CrossRefGoogle Scholar
  10. Backus, G. E., R. H. Estes, D. Chinn, and R. A. Langel, Comparing the jerk with other global models of the geomagnetic Field from 1960 to 1978, J. Geophys. Res., 92, 3615–3622, 1987.CrossRefGoogle Scholar
  11. Bellanger, E., J.-L. Le Mouël, M. Mandea, and S. Labrosse, Chandler Wobble and geomagnetic Jerks, Phys. Earth Planet. Inter., 124, 95–103, 2001.CrossRefGoogle Scholar
  12. Blakely, R., Potential theory in gravity and magnetic applications, Cambridge University Press, 1995.CrossRefGoogle Scholar
  13. Bloxham, J., On the consequences of strong stable stratification at the top of the Earth’s outer core, Geophys. Res. Lett., 17, 2081–2084, 1990.CrossRefGoogle Scholar
  14. Bloxham, J., S. Zatman, and M. Dumberry, The origin of geomagnetic jerks, Nature, 420, 65–68, 2002.CrossRefGoogle Scholar
  15. Chambodut, A., Le champ magnétique terrestre: structures spatiales et variations temporelles vues par les Ondelettes, Ph.D. thesis, Institut de Physique du Globe de Paris, 2004.Google Scholar
  16. Chambodut, A. and M. Mandea, Evidence for geomagnetic jerks in comprehensive models, Earth Planets Space, 57, 139–149, 2005.CrossRefGoogle Scholar
  17. Courtillot, V., J. Ducruix, and J.-L. Le Mouël, Surune accélération récente de la variation séculaire du champ magnétique terrestre, C. R. Hebd. Séances Acad. Sci., ser. D, 287, 1095–1098, 1978.Google Scholar
  18. Courtillot, V. and J.-L. Le Mouël, Comment on “discussion of impulses and jerks in the geomagnetic field” by L. R. Alldredge, J. Geophys. Res., 90, 6897–6898, 1985.CrossRefGoogle Scholar
  19. Courtillot, V., J.-L. Le Mouël, and J. Ducruix, On Backus’ mantle filter theory and the 1969 geomagnetic impulse, Geophys. J. Roy. Astron. Soc, 78, 619–624, 1984.CrossRefGoogle Scholar
  20. Davis, R. and K. Whaler, Velocity fields at the Earth’s core surface from 1900 to 1980 using the frozen-flux approximation and steady velocity assumption, Geophys. Astrophys. Fluid Dynamics, 67, 241–258, 1993.CrossRefGoogle Scholar
  21. Davis, R. and K. Whaler, The 1969 geomagnetic impulse and spin-up of the Earth’s liquid core, Phys. Earth Planet. Inter., 103, 181–194, 1997.CrossRefGoogle Scholar
  22. De Michelis, P., L. Cafarella, and A. Meloni, Worldwide character of the 1991 geomagnetic jerk, Geophys. Res. Lett., 25, 377–380, 1998.CrossRefGoogle Scholar
  23. Eymin, C, Etude des mouvements à la surface du noyau terrestre: du 17ème au 21ème siècle, Ph.D. thesis, Université Paris VI, 2004.Google Scholar
  24. Eymin, C. and G. Hulot, On core surface flows inferred from satellite magnetic data, Phys. Earth Planet. Inter., 152, 200–220, 2005.CrossRefGoogle Scholar
  25. Gavoret, J., D. Gibert, M. Menvielle, and J.-L. Le Mouël, Long-term variations of the external and internal components of the Earth’s magnetic field, J. Geophys. Res., 91, 4787–4796, 1986.CrossRefGoogle Scholar
  26. Gire, C, Sur la variation séculaire du champ magnétique terrestre et les mouvements des couches externes du noyau fluide, Ph.D. thesis, University of Paris 7, 1985.Google Scholar
  27. Gire, C, J.-L. Le Mouël, and T. Madden, Motions of the core surface derived by SV data, Geophys. J. R. Astron. Soc, 84, 1–29, 1986.CrossRefGoogle Scholar
  28. Gire, C. and J.-L. Le Mouël, Tangentially geostrophic flow at core-mantle boundary compatible with the observed geomagnetic secular variation: The large-scale component of the flow, Phys. Earth Planet. Inter., 59, 259–287, 1990.CrossRefGoogle Scholar
  29. Golovkov, V P., T. I. Zvereva, and A. O. Simonyan, Common features and differences between jerks of 1947, 1958 and 1969, Geophys. Astrophys. Fluid Dyn., 49, 81–96, 1989.CrossRefGoogle Scholar
  30. Gubbins, D., Finding core motions from magnetic observations, Phil. Trans. R. Soc. Lond., A306, 247–254, 1982.CrossRefGoogle Scholar
  31. Gubbins, D., Geomagnetic field analysis — II. Secular variation consistent with a perfectly conducting core, Geophys. J. Roy. Astron. Soc, 77, 753–766, 1984.CrossRefGoogle Scholar
  32. Hills, R. G., Convection in the Earth’s mantle due to viscous shear at the core-mantle interface and due to large-scale buoyancy, Ph.D. thesis, New Mexico State University, Las Cruces, 1979.Google Scholar
  33. Holme, R. and K. Whaler, Steady core flow in an azimuthally drifting reference frame, Geophys. J. Int., 145, 560–569, 2001.CrossRefGoogle Scholar
  34. Hulot, G., M. Le Huy, and J.-L. Le Mouël, Secousses (jerks) de la variation séculaire et mouvements dans le noyau terrestre, C. R. Acad. Sci., 317, 333–341, 1993.Google Scholar
  35. Jackson, A., Time-dependency of tangentially geostrophic core surface motions, Phys. Earth Planet. Inter., 103, 293–311, 1997.CrossRefGoogle Scholar
  36. Jackson, A., A. Jonkers, and M. Walker, Four centuries of geomagnetic secular variation from historical records, Phil. Trans. R. Soc. Lond., 358, 957–990, 2000.CrossRefGoogle Scholar
  37. Jault, D., Variation séculaire du champ géomagnétique et fluctuations de la longueur du jour, Ph.D. thesis, Universite Paris VII, 1990.Google Scholar
  38. Le Huy, M., M. Mandea, G. Hulot, and J. Le Mouël, On the characteristics of successive geomagnetic jerks, Earth Planets Space, 50, 723–732, 1998.CrossRefGoogle Scholar
  39. Le Huy, M., M. Mandea, J.-L. Le Mouël, and A. Pais, Time evolution of the fluid flow at the top of the core—Geomagnetic jerks, Earth Planets Space, 52, 163–173, 2000.CrossRefGoogle Scholar
  40. Le Mouël, J.-L., Outer-core geostrophic flow and secular variation of Earth’s geomagnetic field, Nature, 311, 734–735, 1984.CrossRefGoogle Scholar
  41. Le Mouël, J.-L., C. Gire, and T. Madden, Motions at the core surface in the geostrophic approximation, Phys. Earth planet. Inter., 39, 270–287, 1985.CrossRefGoogle Scholar
  42. Macmillan, S., A geomagnetic jerk for the early 1990’s, Earth Planet. Sci. Lett., 137, 189–192, 1996.CrossRefGoogle Scholar
  43. Malin, S. and B. Hodder, Was the 1970 geomagnetic jerk of internal or external origin?, Nature, 296, 726–728, 1982.CrossRefGoogle Scholar
  44. Malin, S., B. Hodder, and D. Barraclough, Geomagnetic variation: a jerk in 1970, in 75th Anniversary Volume ofEbro Observatory, edited by J. O. Cardus, 239–256, Ebro Obs., Tarragona, Spain, 1983.Google Scholar
  45. Mandea, M., E. Bellanger, and J.-L. Le Mouël, A geomagnetic jerk for the end of the 20th century?, Earth Planets Space Letters, 183, 369–373, 2000.CrossRefGoogle Scholar
  46. Mandea Alexandrescu, M., D. Gibert, J.-L. Le Mouël, G. Hulot, and G. Saracco, An estimate of average lower mantle conductivity by wavelet analysis of geomagnetic jerks, J. Geophys. Res., 104, 17735–17745, 1999.CrossRefGoogle Scholar
  47. McLeod, M., On the geomagnetic jerk of 1969, J. Geophys. Res., 90 (B6), 0148–0227, 1985.Google Scholar
  48. Menke, W, Geophysical data analysis: Discrete inverse theory, Academic Press, 1984.Google Scholar
  49. Nagao, H., T. Iyemori, T. Higuchi, S. Nakano, and T. Araki, Local time features of geomagnetic jerks, EarthPlanets Space, 54, 119–131, 2002.Google Scholar
  50. Nagao, H., T. Iyemori, T. Higuchi, and T. Araki, Lower mantle conductivity anomalies estimated from geomagnetic jerks, J. Geophys. Res., 108, 2254, 2003.CrossRefGoogle Scholar
  51. Olsen, N. and M. Mandea, Investigation of a secular variation impulse using satellite data: The 2003 geomagnetic jerk, Earth Planet. Sci. Lett., 255, 94–105, doi:10.1016/j.epsl.2006.12.008, 2007.CrossRefGoogle Scholar
  52. Pais, A. and G. Hulot, Length of day decade variations, torsional oscillations and inner core superrotation: Evidence from recovered core surface zonal flows, Phys. Earth Planet. Inter, 118, 291–316, 2000.CrossRefGoogle Scholar
  53. Pais, M. A., O. Oliveira, and F. Nogueira, Non-uniqueness of inverted CMB flows and deviations from tangential geostrophy, J. Geophys. Res, 109, B08105-1-B08105-20, 2004.Google Scholar
  54. Roberts, P. H. and S. Scott, On the analysis of the secular variation: 1. A hydromagnetic constraint: theory, J. Geomagn. Geoelectr., 17, 137–151, 1965.CrossRefGoogle Scholar
  55. Sabaka, T, N. Olsen, and R. A. Langel, A comprehensive model of the quiet-time, near-Earth magnetic field: phase 3, Geophys. J. Int., 151, 32–68, 2002.CrossRefGoogle Scholar
  56. Sabaka, T., N. Olsen, and M. Purucker, Extending Comprehensive Models of the Earth’s Magnetic Field with Ørsted and CHAMP data, Geophys. J. Int., 159, 521–547, doi: 10.1111/j.1365246X.2004.02,421.x, 2004.CrossRefGoogle Scholar
  57. Voorhies, C. V, Magnetic Location of Earth’s Core-Mantle Boundary and Estimates of the Adjacent Fluid Motion, Ph.D. thesis, University of Colorado, 1984.Google Scholar
  58. Voorhies, C. V, Steady flows at the top of Earth’s core derived from geomagnetic field models, J. Geophys. Res., 91, 12 444–12 466, 1986.CrossRefGoogle Scholar
  59. Voorhies, C. V, Coupling an Inviscid Core to an Electrically Insulating Mantle, J. Geomagn. Geoelectr., 43, 131–156, 1991.CrossRefGoogle Scholar
  60. Voorhies, C. V, Time-varying fluid-flow a the top of Earth’s core derived from definitive geomagnetic reference field models, J. Geophys. Res., 100, 10,029–10,039, 1995.CrossRefGoogle Scholar
  61. Voorhies, C. V, Narrow-scale flow and a weak field by the top of Earth’s core: Evidence from Ørsted, Magsat, and secular variation, J. Geophys. Res., 109, B03106, doi:10.1029/2003JB002833, 2004a.Google Scholar
  62. Voorhies, C. V, Correction to Narrow-scale flow and a weak field by the top of Earth’s core: Evidence from rsted, Magsat, and secular variation, J. Geophys. Res., 109, B08103, doi:10.1029/2004JB003289, 2004b.Google Scholar
  63. Voorhies, C. V and G. E. Backus, Steady flows at the top of the core from geomagnetic-field models the steady motions theorem, Geophys. Astrophys. Fluid Dyn., 32, 163–173, 1985.CrossRefGoogle Scholar
  64. Waddington, R., D. Gubbins, and D. Barber, Geomagnetic field analysis—5. Determining steady core-surface flows directly from geomagnetic observations, Geophys. J. Int., 122, 326–350, 1995.CrossRefGoogle Scholar
  65. Wessel, P. and W. H. F. Smith, Free software helps map and display data, Eos Trans. AGU, 72, 1991.Google Scholar
  66. Whaler, K. A., Does the whole of the Earth’s core convect?, Nature, 287, 528–530, 1980.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2007

Authors and Affiliations

  • Aude Chambodut
    • 1
    • 2
  • Céline Eymin
    • 3
  • Mioara Mandea
    • 2
  1. 1.Department of Applied and Industrial MathematicsUniversity of PotsdamPotsdamGermany
  2. 2.GeoForschungsZentrum PotsdamTelegrafenbergPotsdamGermany
  3. 3.Laboratoire de Géophysique Interne et TectonophysiqueUniversité Joseph FourierGrenoble Cedex 9France

Personalised recommendations