Earth, Planets and Space

, Volume 59, Issue 6, pp 601–611 | Cite as

The first lidar observations of the nighttime sodium layer at low latitudes Gadanki (13.5°N, 79.2°E), India

  • Y. Bhavani Kumar
  • P. Vishnu Prasanth
  • D. Narayana Rao
  • M. Sundara Murthy
  • M. Krishnaiah
Open Access


We report on the first lidar observations of the nighttime mesospheric sodium layer from Gadanki (13.5°N, 79.2°E) site in India. The lidar measurements of upper atmospheric sodium made on 6 nights between the 10 and 16 January 2005 are presented in this paper. The Gadanki lidar uses a Nd:YAG pumped dye laser, tuned to the sodium D2 line (589.0 nm), as a transmitter. Using the system, sodium number density profiles have been obtained with a vertical resolution of 300 m, a time sampling of 120 s. During the initial six nights of observation, the peak sodium concentration is found at a height of 95 km, and the top side scale height is usually about 2 km. On three occasions, a secondary peak was observed at heights between 87 and 92 km. Measurements at Gadanki site indicate that the mean sodium abundances appear to decrease after sunset and increase before sunrise. The average nocturnal columnar abundances were in the range 2–8.9 × 109 cm2. The nightly mean centroid heights range between 92.9 and 95.2 km and the rms widths vary between 4.3 and 4.9 km. On some nights, wave like structures in the sodium layer were observed with wavelength of about 3 km and downward phase velocities of about 1 km/hr. Four sporadic layers were observed during the initial 54 h of observation. The formation and decay of an intense sporadic sodium layer was observed on the night of 11 January 2005. The layer was found to develop between 93 and 90 km altitude and appear between 0230 and 0430 LT.

Key words

Resonance lidar mesospheric sodium sporadic sodium mesospheric chemistry gravity waves sodium layer 


  1. Alpers, M., T. Blix, S. Kirkwood, D. Krankowsky, F. J. Lubken, L. Lutz, and U. von Zahn, First simultaneous measurements of neutral and ionized iron densities in the upper mesosphere, J. Geophys. Res., 98, 275–283, 1993.CrossRefGoogle Scholar
  2. Batista, P. P., B. R. Clemesha, D. M. Simonich, and V. W. J. H. Kirchhoff, Tidal oscillations in the atmospheric sodium layer, J. Geophys. Res., 90, 3881–3888, 1985.CrossRefGoogle Scholar
  3. Batista, P. P., B. R. Clemesha, and D. M. Simonich, Horizontal structures in sporadic sodium layers at 23°S, Geophys. Res. Lett., 18, 1027–1030, 1991.CrossRefGoogle Scholar
  4. Beatty, T. J., R. L. Collins, C. S. Gardner, C. A. Hostetler, and C. F. Sechrist Jr., Simultaneous radar and lidar observations of sporadic E and Na layers at Arecibo, Geophys. Res. Lett., 16, 1019–1022, 1989.CrossRefGoogle Scholar
  5. Bhavani Kumar, Y., V. Siva Kumar, P. B. Rao, M. Krishnaiah, K. Mizutani, T. Aoki, M. Yasui, and T. Itabe, Middle atmospheric temperature measurements using ground based instrument at a low latitude, Ind. J. Rad. and Space Phys., 29, 249–257, 2000.Google Scholar
  6. Bhavani Kumar, Y, V. Siva Kumar, A. R. Jain, and P. B. Rao, MST Radar and Polarization lidar observations of tropical cirrus, Annales Geo. Phy., 19, 873–883, 2001.Google Scholar
  7. Bhavani Kumar, Y, C. Nageswara Raju, and M. Krishnaiah, Indo-Japanese Lidar observations of the Tropical Middle Atmosphere during 1998 and 1999, Adv. Atm, Sci., 23, 711–725, 2006.CrossRefGoogle Scholar
  8. Bhavani Kumar, Y, D. Narayana Rao, M. Sundaramurthy, and M. Krishnaiah, A resonance lidar system for mesospheric sodium measurements, Journal of Optical Engineering, 2007 (in press).Google Scholar
  9. Bills, R. E. and C. S. Gardner, Lidar observations of mesospheric Fe and sporadic Fe layers at Urbana, Illinois, Geophy. Res. Lett., 17, 143–146, 1990.CrossRefGoogle Scholar
  10. Blood, S. P., J. D. Mitchell, C. L. Croskey, T. D. Raymund, E. V. Thrane, T. A. Blux, U. P. Hoppe, D. C. Fritts, and F. J. Scmidlin, Studies of high latitude mesospheric turbulence by radar and rocket II: Measurements of small scale turbulence, J. Atmos. Terr. Pys., 50, 963–976, 1988.CrossRefGoogle Scholar
  11. Chapman, S. and R. S. Lindzen, Atmospheric tides, 200 pp, D. Reidel Press, Dordrecht, Holland, 1970.Google Scholar
  12. Clemesha, B. R., Sporadic neutral metal layers in the mesosphere and lower thermosphere—Review paper, J. Atmos. Terr. Phys., 57, 725–736, 1995.CrossRefGoogle Scholar
  13. Clemesha, B. R., V. W. J. H. Kirchhoff, D. M. Simonich, and H. Takahashi, Evidence of an extraterrestrial Source for the Mesospheric Sodium Layer, Geophys. Res. Lett., 5, 873–876, 1978.CrossRefGoogle Scholar
  14. Clemesha, B. R., D. M. Simonich, P. P. Batista, and V. W. J. H. Kirchhoff, The diurnal variation of atmospheric sodium, J. Geophys. Res., 87, 181–186, 1982.CrossRefGoogle Scholar
  15. Clemesha, B. R., P. P. Batista, and D. M. Simonich, Concerning of the origin of enhanced sodium layers, Geophys. Res. Lett., 16, 1267–1270, 1988.CrossRefGoogle Scholar
  16. Clemesha, B. R., D. M. Simonich, P. P. Batista, and H. Takahashi, Evidence for a lack of diffusive control of the atmospheric sodium layer, J. Atmos. Terr. Phys., 54, 355–362, 1992.CrossRefGoogle Scholar
  17. Clemesha, B. R., D. M. Simonich, H. Takahasi, S. M. L. Melo, and J. M. C. Plane, Experimental evidence for photochemical control of the atmospheric sodium layer, J. Geophy. Res., 100, 18,909–18,916, 1995.CrossRefGoogle Scholar
  18. Clemesha, B. R., D. M. Simonich, P. P. Batista, and I. S. Batista, Lidar observation of atmospheric sodium at an equatorial location, J. Atmos. Terr. Phys., 60, 1773–1778, 1998.CrossRefGoogle Scholar
  19. Clemesha, B. R., P. P. Batista, and D. M. Simonich, An evaluation of the evidence for ion recombination as a source of sporadic neutral layers in the lower thermosphere, Adv. Space Res., 23, 547–556, 1999.CrossRefGoogle Scholar
  20. Clemesha, B. R., P. P. Batista, and D. M. Simonich, Simultaneous measurements of meteor winds and sporadic sodium layers in the 80-110 km region, Adv. Space. Res., 27, 1679–1684, 2001.CrossRefGoogle Scholar
  21. Clemesha, B. R., P. P. Batista, and D. M. Simonich, Long-term variations in the centroid height of the atmospheric sodium layer, 34th scientific assembly ofCOSPAR, Houston, Texas, USA, 10–19 October, 2002.Google Scholar
  22. Cox, R. M. and J. M. C. Plane, An ion-molecule mechanism for the formation of neutral sporadic Na layers, J. Geophys. Res., 103, 6349–6359, 1998.CrossRefGoogle Scholar
  23. Drummond, J. D., B. W. Grime, C. S. Gardner, A. Z. Liu, X. Chu, and T. J. Kane, Observations of persistent Leonid meteor trails: 1. Advection of the “Diamond Ring”, J. Geophys. Res., 106, 21517–21524, 2001.CrossRefGoogle Scholar
  24. Drummond, J. D., B. W. Grime, C. S. Gardner, A. Z. Liu, X. Chu, M. C. Kelley, C. Kruschwitz, and T. J. Kane, Observations of persistent Leonid meteor trails 3. The “Glowworm”, J. Geophys. Res., 107, SIA 5–1, doi:10.1029/2001JA000223, 2002.Google Scholar
  25. Fricke, K. H. and U. von Zahn, Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar, J. Atmos. Terr. Phys., 47, 499–512, 1985.CrossRefGoogle Scholar
  26. Gardner, C. S., Sodium resonance fluorescence lidar applications in atmospheric science and astronomy, IEEEP, 77, 408–418, 1989.Google Scholar
  27. Gardner, C. S. and J. D. Shelton, Density response of neutral atmospheric layers to gravity wave perturbations, J. Geophys. Res., 90, 1745–1754, 1985.CrossRefGoogle Scholar
  28. Gardner, C. S. and D. G. Voelz, Lidar studies of the nighttime sodium layer over Urbana, Illinois 2. Gravity waves, J. Geophys. Res., 92, 4673–4694, 1987.CrossRefGoogle Scholar
  29. Gardner, C. S., D. G. Voelz, C. F. Sechrist Jr., and A. C. Segal, Lidar studies of the nighttime sodium layer over Urbana, Illinois, 1. Seasonal and nocturnal variations, J. Geophys. Res., 91, 13659–13673, 1986.CrossRefGoogle Scholar
  30. Gardner, C. S., D. C. Senft, T. J. Beatty, R. E. Bills, and C. A. Hosteller, Rayleigh and sodium lidar techniques for measuring the middle atmosphere density, temperature and wind perturbations and their spectra, WITS Handbook, 2, 148–1187, 1989.Google Scholar
  31. Geisler, J. E. and R. E. Dickinson, Comment on “Upper atmosphere sodium and stratospheric warmings at high latitudes”, J. Atmos. Sci., 24, 720–721, 1967.CrossRefGoogle Scholar
  32. Granier, C, J. P. Jegou, and G. Megie, Resonant lidar detection of Ca and Ca + in the upper atmosphere, Geophy. Res. Lett., 12, 655–658, 1985.CrossRefGoogle Scholar
  33. Grime, B. W., T. J. Kane, S. C. Collins, M. C. Kelley, C. A. Kruschwitz, J. S. Friedman, and C. A. Tepley, Meteor trail advection and dispersion: Preliminary lidar observations, Geophys. Res. Lett., 26, 675–678, 1999.CrossRefGoogle Scholar
  34. Hanson, W. B. and J. S. Donaldson, Sodium distribution in the upper atmosphere, J. Geophys. Res., 72, 5513–5514, 1967.CrossRefGoogle Scholar
  35. Hines, C. O., Dynamical heating of the upper atmosphere, J. Geophys. Res., 70, 177, 1974.CrossRefGoogle Scholar
  36. Hoffner, J., U. von Zahn, W. J. McNeil, and E. Murad, The 1996 Leonid shower as studied with a potassium lidar: Observations and inferred meteoroid sizes, J. Geophys. Res., 104, 2633–2643, 1999.CrossRefGoogle Scholar
  37. Hoffner, J., C. Fricke-Begemann, and U. von Zahn, Note on the reaction of the upper atmosphere potassium layer to the 1999 leonid meteor storm, Earth, Moon and Planets, 82–83, 555–564, 2000.Google Scholar
  38. Hunten, D. M., A meteor-ablation model of the sodium and potassium layers, Geophys. Res. Lett., 8, 369–372, 1981.CrossRefGoogle Scholar
  39. Kane, T. J. and C. S. Gardner, Lidar observations of meteoric deposition of mesospheric metals, Science, 259, 1297–1300, 1993.CrossRefGoogle Scholar
  40. Kane, T. J., C. S. Gardner, Q. Zhou, J. D. Mathews, and C. A. Tepley, Lidar, radar and airglow observations of a prominent sporadic Na/Sporadic E layer event at Arecibo during AIDA-89, J. Atmos. Terr. Phys., 55, 499–511, 1993.CrossRefGoogle Scholar
  41. Kane, T., B. Grime, S. Franke, E. Kudeki, E. Urbina, M. Kelley, and S. Collins, Joint Observations of Sodium Enhancements and Field-Aligned Ionospheric irregularities, Geophys. Res. Lett., 28, 1375–1378, 2001.CrossRefGoogle Scholar
  42. Kirchhoff, V. W. J. H. and B. R. Clemesha, Atmospheric sodium measurements at 23°S, J. Atmos. Terr. Phys., 35, 1493–1498, 1973.CrossRefGoogle Scholar
  43. Kirchhoff, V. W. J. H., B. R. Clemesha, and D. M. Simonich, The atmospheric neutral sodium layer, 1. Recent modeling compared to measurements, J. Geophys. Res., 66, 6892–6898, 1981.CrossRefGoogle Scholar
  44. Kruschwitz, C. A., M. C. Kelley, C. S. Gardner, G. Swenson, A. Z. Liu, X. Chu, J. D. Drummond, B. W. Grime, W. T. Armstrong, J. M. C. Plane, and P. Jenniskens, Observations of persistent Leonid meteor trails, 2. Photometry and numerical modelling, J. Geophys. Res., 106, 21 525, (2000JA000174), 2001.Google Scholar
  45. Kwon, K. H., C. S. Gardner, D. C. Senft, F L. Roesler, and J. Harlander, Daytime lidar measurements of tidal winds in the mesospheric sodium layer at Urbana, Illinois, J. Geophys. Res., 92, 8781–8786, 1987.CrossRefGoogle Scholar
  46. Kwon, K. H., D. C. Senft, and C. S. Gardner, Lidar observations of sporadic sodium layers at Mauna Kea Observatory, Hawaii, J. Geophys. Res., 93, 14199–14208, 1988.CrossRefGoogle Scholar
  47. Miyagawa, H., T. Nakamura, T. Tsuda, M. Abo, C. Nagasawa, T. D. Kawahara, K. Kobayashi, T. Kitahara, and A. Nomura, Observations of meso-spheric sporadic sodium layers with the MU radar and sodium lidars, Earth Planets Space, 51, 785–797, 1CrossRefGoogle Scholar
  48. Nagasawa, C. and M. Abo, Lidar observations of a lot of sporadic sodium layer in mid-latitude, Geophys. Res. Lett., 22, 263–266, 1995.CrossRefGoogle Scholar
  49. Nicolet, M., On the molecular scattering in the terrestrial atmosphere: An empirical formula for its calculation in the homosphere, Planet. Space Sci., 32, 1467–1468, 1984.CrossRefGoogle Scholar
  50. Plane, J. M. C., The chemistry of meteoric metals in the Earth’s upper atmosphere, Int. Rev. Phys. Chem., 10, 55, 1991.CrossRefGoogle Scholar
  51. Richter, E. S. and C. F. Sechrist Jr, A cluster ion chemistry for the meso-spheric sodium layer, J. Atmos. Terr. Phys., 41, 579–586, 1979.CrossRefGoogle Scholar
  52. Richter, E. S., J. R. Rowlett, C. S. Gardner, and C. F. Sechrist Jr., Lidar observation of the mesospheric Na layer over Urbana, Illinois, J. Atmos. Terr. Phys., 43, 327–337, 1981.CrossRefGoogle Scholar
  53. Shibata, Y., C. Nagasawa, M. Abo, T. Maruyama, S. Saito, and T. Naka-mura, Lidar observations of sporadic Fe and Na layers in the mesopause region over Equator, J. Met. Soc. of Japan, 84A, 317–325, 2006.CrossRefGoogle Scholar
  54. Simonich, D. M., B. R. Clemesha, and V. W. J. H. Kirchhoff, The meso-spheric sodium layer at 23°S: Nocturnal and seasonal variations, J. Geo-phys. Res., 84, 1543–1550, 1979.CrossRefGoogle Scholar
  55. Simonich, D. M. and B. R. Clemesha, Resonant extinction of lidar from the alkali metal layers in the upper atmosphere, Appl. Optics, 22, 1387–1389, 1983.CrossRefGoogle Scholar
  56. Slipher, V. M., Emission in the spectrum of the light of the night sky, Publ. Astron. Soc. Pac., 41, 262–263, 1929.Google Scholar
  57. States, R. J. and C. S. Gardner, Structure of the mesospheric Na layer at 40°N latitude: seasonal and diurnal variations, J. Geophys. Res., 104, 11783–11798, 1999.CrossRefGoogle Scholar
  58. von Zahn, U. and T. L. Hansen, Sudden neutral sodium layers: A strong link to sporadic E layers, J. Atmos. Terr. Phys., 50, 93–104, 1988.CrossRefGoogle Scholar
  59. von Zahn, U., M. Gerding, J. Hoffner, W. J. McNeil, and E. Murad, Fe, Ca, and K atom densities in the trails of Leonids and other meteors: Strong evidence for differential ablation, Meteorit. Planet. Sci., 34, 1017–1027, 1999.CrossRefGoogle Scholar
  60. Williams, B. P., D. C. Fritts, J. D. Vance, C. Y. She, T. Abe, and E. Thrane, Sodium lidar measurements of waves and instabilities near the mesopause region during the DELTA rocket campaign, Earth Planets Space, 58, 1131–1137, 2006.CrossRefGoogle Scholar
  61. Williams, B. P., D. C. Fritts, C. Y. She, and R. A. Goldberg, Gravity wave propagation through a large semidiurnal tide and instabilities in the mesosphere and lower thermosphere during the winter 2003 MaCWAVE rocket campaign, Ann. Geophys., 24, 1199–1208, 2CrossRefGoogle Scholar
  62. Xu, J. and A. K. Smith, Perturbations of the sodium layer controlled by chemistry or dynamics, Geophys. Res. Lett., 30(20), 2056–2059, 2003.CrossRefGoogle Scholar
  63. Xu, J., A. K. Smith, and R. A. Ma, Numerical study of the effect of gravity wave propagation on minor species distribution in the mesopause region, J. Geophys. Res., 108, 10.10291/2001JD001570, 2003.Google Scholar
  64. Yi, F., S. Zhang, H. Zeng, Y. He, X. Yue, J. Liu, H. Lv, and D. Xiong, Li-dar observations of sporadic Na layers over Wuhan (30.5°N, 114.4°E), Geophys. Res. Lett., 29, 59.1–59.4, 2002.CrossRefGoogle Scholar
  65. Zhou, Q. and J. D. Mathews, Generation of sporadic sodium layers via turbulent heating of the atmosphere, J. Atmos. Terr. Phys., 57, 1309–1320, 1995.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2007

Authors and Affiliations

  • Y. Bhavani Kumar
    • 1
  • P. Vishnu Prasanth
    • 2
  • D. Narayana Rao
    • 1
  • M. Sundara Murthy
    • 2
  • M. Krishnaiah
    • 2
  1. 1.National Atmospheric Research Laboratory (NARL)TirupatiIndia
  2. 2.S.V.UniversityTirupatiIndia

Personalised recommendations