Earth, Planets and Space

, Volume 59, Issue 6, pp 475–497 | Cite as

Stability of VLBI, SLR, DORIS, and GPS positioning

Open Access


The residual signal in VLBI, SLR, DORIS and GPS station motion, after a linear trend and seasonal components have been removed, is analysed to investigate site-specific and technique-specific error spectra. The study concentrates on 60 sites with dense observation history by two or more space geodetic techniques. Statistical methods include the Allan variance analysis and the three-cornered hat algorithm. The stability of time-series is defined by two parameters, namely the Allan deviation for a one-year sampling time (noise level) and the slope of the Allan variance graph with its spectral interpretation (noise type). The site-specific noise level is found to be in the range 0.5–3.5 mm in either horizontal direction and 1–4.5 mm in height for most sites. The distribution of site-specific noise type includes both white noise and flicker noise. White noise is predominant in the East direction. Both types of noise are found in the North direction, with no particular geographical clustering. In the Up direction, the Northern hemisphere sites seem to be split in two large geographical sectors characterised either by white noise or by flicker noise signatures. Technique-specific noise characteristics are estimated in several ways, leading to a white noise diagnostic for VLBI and SLR in all three local directions. DORIS has also white noise in the horizontal directions, whereas GPS has a flicker noise spectrum. The vertical noise spectrum is indecisive for both DORIS and GPS. The three-dimensional noise levels for the one-year sampling time are 1.7 mm for VLBI, 2.5 mm for SLR, 5.2 mm for DORIS, and 4.1 mm for GPS. For GPS, the long-term analysis homogeneity has a strong influence. In the case of a test solution reanalysed in a fully consistent way, the noise level drops to the VLBI level in horizontal and to the SLR level in vertical. The three-dimensional noise level for a one-year sampling time decreases to 1.8 mm. In addition, the percentage of stations with flicker noise drops to only about 20% of the network.

Key words

Reference frames station positions station stability Allan variance three-cornered hat 


  1. Allan, D. W., Statistics of Atomic Frequency Standards, Proc. IEEE, 54, 221–231, 1966.CrossRefGoogle Scholar
  2. Allan, D. W., Time and frequency characterisation, estimation, and prediction of precision clocks and oscillators, IEEE Trans. UFCC, 34, 647–654, 1987.CrossRefGoogle Scholar
  3. Allan, D. W. and J. A. Barnes, A Modified “Allan Variance” with Increased Oscillator Characterization Ability, Proceedings of the 35th Annual Frequency Control Symposium, 470–475, 1981.Google Scholar
  4. Altamimi, Z. and X. Collilieux, The status of ITRF2004, IAG Symposium Series, 130, Springer-Verlag, P. Tregoning and C. Rizos (eds), 2007 (in press).Google Scholar
  5. Altamimi, Z., C. Boucher, and P. Sillard, New Trends for the Realization of the International Terrestrial Reference System, Adv. Space Res., 30, 175, 2001.CrossRefGoogle Scholar
  6. Altamimi, Z., P. Sillard, and C. Boucher, ITRF2000, A new release of the international terrestrial reference frame for Earth science applications, J. Geophys. Res., 107(B10), 2214, 2002.CrossRefGoogle Scholar
  7. Altamimi, Z., C. Boucher, and D. Gambis, Long-term stability of the Terrestrial Reference Frame, Advances in Space Research, 36, 342–349, 2005.CrossRefGoogle Scholar
  8. Altamimi, Z., X. Collilieux, and C. Boucher, DORIS contribution to ITRF2005, J. Geod., 80, 625–635, 2006.CrossRefGoogle Scholar
  9. Blaha, G., Free networks: minimum norm solution as obtained by the inner adjustment constraint method, Bull. Geod., 56, 209–219, 1982.CrossRefGoogle Scholar
  10. Blewitt, G. and D. Lavallée, Effect of annually repeating signals on geodetic velocity estimates, paper presented at The Tenth General Assembly of the WEGENER Project (WEGENER 200), San Fernando, Spain, September 18–20, 2000.Google Scholar
  11. Blewitt, G. and D. Lavallée, Effect of annual signals on geodetic velocity, J. Geophys. Res., 107, B7, ETG 9–1, 2002.Google Scholar
  12. Boucher, C., Z. Altamimi, P. Sillard, and M. Feissel-Vernier, The ITRF2000, IERS Technical Note, 31, 2004.Google Scholar
  13. Collilieux, X., Z. Altamimi, D. Coulot, J. Ray, and P. Sillard, Spectral and correlation analyses of ITRF2005 VLBI, GPS and SLR height residuals: How well do space geodetic techniques agree?, J. Geophys. Res., submitted, 2007.Google Scholar
  14. Coulot, D., Télémétrie laser sur satellites et combinaison de techniques géodésiques. Contribution aux syste`mes de référence et applications, PhD Thesis dissertation, Paris Observatory, Jul. 2005.Google Scholar
  15. Ding, X. L., D. W. Zheng, D. N. Dong, C. Ma, Y. Q. Chen, and G. L. Wang, Seasonal and secular positional variations at eight collocated GPS and VLBI stations, J. Geod., 79, 71–81, 2005.CrossRefGoogle Scholar
  16. Dong, D., P. Fang, Y. Bock, M. K. Cheng, and S. Miyazaki, Anatomy of apparent seasonal variations from GPS-derived site position time series, J. Geophys. Res., 107, 9–1, 2002.Google Scholar
  17. Feissel-Vernier, M. and K. Le Bail, Spectral characteristics of the measurement of station motion with GPS, IGS 2004-2005 Technical report, Edited by IGS Central Bureau, 2006 (in press).Google Scholar
  18. Feissel-Vernier, M., K. Le Bail, P. Berio, D. Coulot, G. Ramillien, and J. J. Valette, Geocenter motion measured by DORIS and SLR and geophysical evidence, J. Geod., 80, 637–648, 2006.CrossRefGoogle Scholar
  19. Ferland, R., J. Kouba, and D. Hutchison, Analysis methodology and recent results of the IGS network combination, Earth Planets Space, 52, 953–957, 2000.CrossRefGoogle Scholar
  20. Gontier, A.-M., K. Le Bail, M. Feissel, and T. M. Eubanks, Stability of the extragalactic VLBI reference frame, Astron. Astrophys., 375, 661–674, 2001.CrossRefGoogle Scholar
  21. Gontier, A.-M., M. Feissel-Vernier, and C. Barache, Paris Observatory Analysis Center OPAR: Report on Activities, January-December 2005, IVS Annual Report, 2005, 256–259, 2006.Google Scholar
  22. Gray, J. E. and D. W. Allan, A method for estimating the frequency stability of an individual oscillator, Proc. 28th Annual Symp. on Frequency Control, May 1974, 243–246, 1974.CrossRefGoogle Scholar
  23. Hugentobler, U. and G. Beutler, Measurement of Geocenter Variations With GNSS, American Geophysical Union, Fall Meeting 2005, abstract G31A-02, 2005.Google Scholar
  24. Koot, L., O. de Viron, and V. Dehant, Atmospheric angular momentum time-series: characterization of their internal noise and creation of a combined series, J. Geod., 79, 663–674, 2006.CrossRefGoogle Scholar
  25. Langbein, J. and H. Johnson, Correlated errors in geodetic time-series: Implications for time-dependant deformation, J. Geophys. Res., 102, 591–604, 1997.CrossRefGoogle Scholar
  26. Le Bail, K., Etude statistique de la stabilité des stations de géodésie spatiale. Application a` DORIS, PhD Thesis dissertation, Observatoire de Paris, Dec. 2004.Google Scholar
  27. Le Bail, K., Estimating the noise in space-geodetic positioning. The case of DORIS, J. Geod., 80, 541–565, 2006.CrossRefGoogle Scholar
  28. Le Bail, K., M. Feissel-Vernier, J.-J. Valette, and W. Zerhouni, Long term consistency of multi-technique terrestrial reference frames, a spectral approach, IAG Symposium Series, 130, Springer-Verlag, P. Tregoning and C. Rizos (eds), 2006 (in press).Google Scholar
  29. Lindman, H. R., Analysis of variance in complex experimental designs, Edited by W. H. Freeman and Co, San Francisco, 1974.Google Scholar
  30. Ma, C., E. F. Arias, T. M. Eubanks, A. L. Fey, A.-M. Gontier, C. S. Jacobs, O. J. Sovers, B. A. Archinal, and P. Charlot, The International Celestial Reference Frame as realized by Very Long Baseline Interferometry, Astron. J., 116, 516, 1998.CrossRefGoogle Scholar
  31. Mangiarotti, S., A. Cazenave, L. Soudarin, and J.-F. Crétaux, Annual vertical crustal motions predicted from surface mass redistribution and observed by space geodesy, J. Geophys. Res., 106, 4277–4292, 2001.CrossRefGoogle Scholar
  32. Mao, A., C. G. A. Harrison, and T. H. Dixon, Noise in GPS coordinate times series, J. Geophys. Res., 104, 2797–2816, 1999.CrossRefGoogle Scholar
  33. McCarthy, D. D., G. Petit, (eds) IERS Standards (2003), IERS Technical Note, 32, BKG, Frankfurt am Main, Germany, 2004.Google Scholar
  34. McMillan, D. S. and C. Ma, Atmospheric gradients and the VLBI terrestrial and celestial reference frames, Geophys. Res. Lett., 24, 453, 1997.CrossRefGoogle Scholar
  35. Meisel, B., D. Angermann, M. Kruegel, H. Drewes, M. Gerstl, R. Kelm, H. Mueller, W. Seemueller, and V. Tesmer, Refined approaches for terrestrial reference frame computations, Adv. in Space Res., 36, 350–357, 2005.CrossRefGoogle Scholar
  36. Michel, V., G. Roesch, and J. Long, Hartebeesthoek Co-location Survey, Proceedings of the IERS Workshop on site co-location. IERS Technical Note, 33, Edited by W. R. Dick and B. Richter, 34–36, BKG, Frankfurt am Main, Germany, 2005.Google Scholar
  37. Nicolas, J., J.-M. Nocquet, M. van Camp, T. van Dam, J.-P. Boy, J. Hinderer, P. Gegout, E. Calais, and M. Amalvict, Seasonal effect on vertical positioning by Satellite Laser Ranging and Global Positioning System and on absolute gravity at the OCA geodetic station, Grasse, France, Geophys. J. Int., 167, 1127–1137, 2006.CrossRefGoogle Scholar
  38. Penna, N. T. and M. P. Stewart, Aliased tidal signatures in continuous GPS height time-series, Geophys. Res. Lett., 30, 2184–2187, 2003.CrossRefGoogle Scholar
  39. Percival, D. B., Stochastic models and statistical analysis for clock noise, Metrologia, 40, S289–S304, 2003.CrossRefGoogle Scholar
  40. Petrov, L. and J. Boy, Study of the atmospheric pressure loading signal in very long baseline interferometry observations, J. Geophys. Res., 109, B03405, 2004.Google Scholar
  41. Petrov, L. and C. Ma, Study of harmonic site position variations determined by very long baseline interferometry, J. Geophys. Res., 108, B4, ETG 5-1, 2003.Google Scholar
  42. Premoli, A. and P. Tavella, A Revisited Three-Cornered-Hat Method for Estimating Frequency Standards Instability, IEEE Trans. on instrumentation and measurement, 42, 1–10, 1993.CrossRefGoogle Scholar
  43. Ray, J. and Z. Altamimi, Evaluation of co-location ties relating the VLBI and GPS reference frames, J. Geod., 79, 189–195, 2005.CrossRefGoogle Scholar
  44. Richter, B., W. R. Dick, and W. Schwegmann, (eds) Proceedings of the IERS Workshop on site co-location, Matera, Italy, 23–24 October 2003, IERS Technical Note, 33, 2005.Google Scholar
  45. Soudarin, L. and J.-F. Crétaux,, 2006a.
  46. Soudarin, L. and J.-F. Crétaux, A model of present-day plate motions from 12 years of DORIS measurements, J. Geod., 80, 609–624, 2006b.CrossRefGoogle Scholar
  47. Steigenberger, P., M. Rothacher, R. Dietrich, M. Fritsche, A. Ruelke, and S. Vey, Reprocessing of a global GPS network, J. Geophys. Res., 111, B05402, 2003.Google Scholar
  48. Tavernier, G., H. Fagard, M. Feissel-Vernier, K. Le Bail, F Lemoine, C. Noll, J. Ries, L. Soudarin, J.-J. Valette, and P. Willlis, The International DORIS Service: genesis and early achievements, J. Geod., 80, 403–417, 2006.CrossRefGoogle Scholar
  49. Titov, O. and H. Yakovleva, Seasonal variation in radial components of VLBI stations, Astron. and Astrophys. Trans., 18, 593–606, 1999.Google Scholar
  50. Williams S. D. P., Offsets in Global Positioning System time series, J. Geophys. Res., 108 (B6), 2310, 2003.CrossRefGoogle Scholar
  51. Williams, S. D. P. and P. Willis, Error analysis of weekly station coordinates in the DORIS network, J. Geod., 80, 525–539, 2006.CrossRefGoogle Scholar
  52. Williams, S. D. P., Y. Bock, P. Fang, P. Jamason, R. M. Nikolaidis, L. Prawirodirdjo, M. Miller, and D. J. Johnson, Error analysis of continuous GPS position time-series, J. Geophys. Res., 109, B03412, 2004.Google Scholar
  53. Woppelmann, G., B. Martin-Miguez, M.-N. Bouin, and Z. Altamimi, Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide, Global and Planetary change, 2007 (in press).Google Scholar
  54. Zhang, J., U. Bock, H. Johnson, P. Fang, S. Williams, J. Genrich, S. Wdowinski, and J. Behr, Southern California Permanent GPS Geodetic Array: error analysis of daily position estimates and site velocities, J. Geophys.Res., 102, 18035–18056, 1997.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2007

Authors and Affiliations

  1. 1.Observatoire de Paris/SYRTE and Institut Géographique National/LAREGParisFrance
  2. 2.Institut de Physique du Globe de Paris/Géodésie et Gravimétrie, and Université Paris 7Paris Cedex 05France
  3. 3.IGN/LAREG and Observatoire de la Côte d Azur/GEMINIMarne la Vallée CedexFrance

Personalised recommendations