Earth, Planets and Space

, Volume 59, Issue 2, pp 113–125 | Cite as

Tectonic history of Europa: Coupling between internal evolution and surface stresses

Open Access


A stress history in the ice shell of Europa is presented. Europa’s surface is ubiquitous in extensional tectonic features such as banded terrains. These surface features suggest that the surface may have been fractured and extended due to tensional stress, and various origins for such stresses have been proposed. We have focused on the solidification of the liquid water layer and the accompanying volume change as one of the dominant sources for such stresses. To estimate the stress state in the ice shell, we first performed numerical simulations of the thermal history. Based on the resulting structural evolution, we calculated stresses in the viscoelastic ice shell due to the solidification of the liquid layer. Europa’s liquid layer solidifies slowly and may partially survive at present, and its solidification induces sufficient tensional stress to drive extensional tectonic activity. Consequently, we propose the tectonic scenario that the volume change due to phase change develops the basic amplitude of the stress, while tidal forces work as a trigger to fracture the surface.

Key words

Thermal history tectonics crustal stress structural evolution 


  1. Abe, Y., Thermal evolution and chemical differentiation of the terrestrial magma ocean, in Evolution of the Earth and Planets, edited by E. Takahashi, R. Jeanloz, and D. Rubie, 159 pp., American Geophysical Union, Washington DC, 1993.Google Scholar
  2. Anderson, J. D., G. Schubert, R. A. Jacobson, E. L. Lau, W. B. Moore, and W. L. Sjogren, Europa’s differentiated internal structure: Inferences from four Galileo encounters, Science, 281, 2019–2022, 1998.CrossRefGoogle Scholar
  3. Davaille, A. and C. Jaupart, Onset of thermal convection in fluids with temperature-dependent viscosity: Application to the oceanic mantle, J. Geophys. Res., 99, 19853–19866, 1994.CrossRefGoogle Scholar
  4. Geissler, P. E., R. Greenberg, G. Hoppa, P. Helfenstein, A. McEwen, R. T. Pappalardo, B. R. Tufts, M. Ockert-Bell, R. Sullivan, R. Greeley, M. J. S. Belton, T. Denk, B. Clark, J. Burns, J. Veverka, and the Galileo Imaging Team, Evidence for non-synchronous rotation of Europa. Nature, 391, 368–370, 1998.CrossRefGoogle Scholar
  5. Greenberg, R., The evil twin of Agenor; Tectonic convergence on Europa, Icarus, 167, 313–319, 2004.CrossRefGoogle Scholar
  6. Greenberg, R. and S. J. Weidenschilling, How fast do Galilean satellites spin?, Icarus, 58, 186–196, 1984.CrossRefGoogle Scholar
  7. Greenberg, R., P. Geissler, G. V. Hoppa, B. R. Tufts, D. D. Durda, R. Pappalardo, J. W. Head, R. Greeley, R. Sullivan, and M. H. Carr, Tectonic processes on Europa: Tidal stresses, mechanical response, and visible features, Icarus, 135, 64–78, 1998.CrossRefGoogle Scholar
  8. Gold, L. W., Engineering properties of fresh-water ice, J. Glaciology, 19, 197–223, 1977.Google Scholar
  9. Goldsby, D. L. and D. L. Kohlstedt, Superplastic deformation of ice: Experimental observations, J. Geophys. Res., 106, 11017–11030, 2001.CrossRefGoogle Scholar
  10. Helfenstein, P. and E. M. Parmentier, Patterns of fracture and tidal stresses due to nonsynchronous rotation: Implications for fracturing on Europa, Icarus, 61, 175–184, 1985.CrossRefGoogle Scholar
  11. Hiller, J. and S. W. Squyres, Thermal stress tectonics on the satellites of Saturn and Uranus, J. Geophys. Res., 96, 15665–15674, 1991.CrossRefGoogle Scholar
  12. Hobbs, P. V., Ice Physics, Oxford University Press, London, 1974.Google Scholar
  13. Honda, S., Local Rayleigh and Nusselt numbers for cartesian convection with temperature-dependent viscosity, Geophys. Res. Lett., 23, 2445–2448, 1996.CrossRefGoogle Scholar
  14. Hoppa, G. V., B. R. Tufts, R. Greenberg, T. A. Hurford, D. P. O’Brien, and P. E. Geissler, Europa’s rate of rotation derived from the tectonic sequence in the Astypalaea region, Icarus, 153, 208–213, 2001.CrossRefGoogle Scholar
  15. Hussmann, H., T. Spohn, and K. Wieczerkowski, Thermal equilibrium states of Europa’s ice shell: Implications for internal ocean thickness and surface heat flow, Icarus, 156, 143–151, 2002.CrossRefGoogle Scholar
  16. Karato, S., M. S. Peterson, and J. D. FitzGerald, Rheology of synthetic olivine aggregates: Influence of grain size and water, J. Geophys. Res., 91, 8151–8176, 1986.CrossRefGoogle Scholar
  17. Khurana, K. K., M. G. Kivelson, D. J. Stevenson, G. Schubert, C. T. Russell, R. J. Walker, and C. Polanskey, Induced magnetic field as evidence for subsurface oceans in Europa and Callisto, Nature, 395, 777–780, 1998.CrossRefGoogle Scholar
  18. Kivelson, M. G., K. K. Khurana, C. T., Russell, M. Volwerk, R. J. Walker, and C. Zimmer, Galileo magnetometer measurements: A stronger case for a subsurface ocean at Europa, Science, 289, 1340–1343, 2000.CrossRefGoogle Scholar
  19. Kuramoto, K. and T. Matsui, Formation of a hot proto-atmosphere on the accreting giant-icy-satellite: Implications for the origin and evolution of Titan, Ganymede and Callisto, J. Geophys. Res., 99, 21183–22120, 1994.CrossRefGoogle Scholar
  20. Landau, L. and E. Lifshitz, Theory of Elasticity, 3rd ed., Pergamon Press, Oxford, 2002.Google Scholar
  21. Leith, A. C. and W B. McKinnon, Is there evidence for polar wander on Europa?, Icarus, 120, 387–398, 1996.CrossRefGoogle Scholar
  22. Lunine, J. and D. J. Stevenson, Formation of the Galilean satellites in a gaseous nebula, Icarus, 52, 14–39, 1982.CrossRefGoogle Scholar
  23. Mason, B., Handbook of Elemental Abundances in Meteorites, New York, Gordon and Breach, 1971.Google Scholar
  24. McKinnon, W. B., Geodynamics of icy satellites, in Solar System Ices, edited by B. Schmitt et al., pp. 525–550, Kluwer Academic Press, Dordrecht, 1998.CrossRefGoogle Scholar
  25. Moore, W B. and G. Schubert, Note: The tidal response of Europa, Icarus, 147, 317–319, 2000.CrossRefGoogle Scholar
  26. Nimmo, F., Stresses generated in cooling viscoelastic ice shells: Application to Europa, J. Geophys. Res., 109, doi:10.1029/2004JE002347, 2004.Google Scholar
  27. Ojakangas, G. W and D. J. Stevenson, Thermal state of an ice shell on Europa, Icarus, 81, 220–241, 1989.CrossRefGoogle Scholar
  28. Pappalardo, R. T. and R. J. Sullivan, Evidence for separation across a gray band on Europa, Icarus, 123, 557–567, 1996.CrossRefGoogle Scholar
  29. Pappalardo, R. T., M. J. S. Belton, H. H. Breneman, M. H. Carr, C. R. Chapman, G. C. Collins, T. Denk, S. Fagents, P. E. Geissler, B. Giese, R. Greeley, R. Greenberg, J. W. Head, P. Helfenstein, G. Hoppa, S. D. Kadel, K. P. Klaasen, J. E. Klemaszewski, K. Magee, A. S. McEwen, J. M. Moore, W. B. Moore, G. Neukum, C. B. Phillips, L. M. Prockter, G. Schubert, D. A. Senske, R. J. Sullivan, B. R. Tufts, E. P. Turtle, R. Wagner, and K. K. Williams, Does Europa have a subsurface ocean? Evaluation of the geological evidence. J. Geophys. Res., 104, 24015–24055, 1999.CrossRefGoogle Scholar
  30. Passey, Q. R. and E. M. Shoemaker, Craters and basins on Ganymede and Callisto: Morphological indicators of crustal evolution, in Satellites of Jupiter, edited by D. Morrison, pp. 379–434, Univ of Arizona Press, Tucson, 1982.Google Scholar
  31. Phillips, C. B., A. S. McEwen, G. V. Hoppa, S. A. Fagents, R. Greeley, J. E. Klemaszewski, R. T. Pappalardo, K. P. Klaasen, and H. H. Breneman, The search for current geologic activity on Europa, J. Geophys. Res., 105, 22579–22597, 2000.CrossRefGoogle Scholar
  32. Prockter, L. M. and R. T. Pappalardo, Folds on Europa: Implications for crustal cycling and accommodation of extension, Science, 289, 941–944, 2000.CrossRefGoogle Scholar
  33. Prockter, L. M., J. W. Head, R. T. Pappalardo, R. J. Sullivan, A. E. Clifton, B. Giese, R. Wagner, and G. Neukum, Morphology of Europan bands at high resolution: A mid-ocean ridge-type rift mechanism, J. Geophys. Res., 107, doi:10.1029/2000JE001458, 2002.Google Scholar
  34. Rathbun, J. A., G. S. Musser, and S. W. Squyres, Ice diapirs on Europa: Implications for liquid water, Geophys. Res. Lett., 25, 4157–4160, 1998.CrossRefGoogle Scholar
  35. Sarid, A. R., R. Greenberg, G. V. Hoppa, P. Geissler, and B. Preblich, Crack azimuths on Europa: Time sequence in the sourthern leading face, Icarus, 168, 144–157, 2004.CrossRefGoogle Scholar
  36. Sasaki, S. and K. Nakazawa, Metal-silicate fractionation in the growing Earth: Energy source for the terrestrial magma ocean, J. Geophys. Res., 91, 9231–9238, 1986.CrossRefGoogle Scholar
  37. Schenk, P. and W. B. McKinnon, Fault offsets and lateral crustal movement on Europa: Evidence for a mobile ice shell, Icarus, 79, 75–100, 1989.CrossRefGoogle Scholar
  38. Schubert, G., T. Spohn, and R. T. Reynolds, Thermal histories, and internal structures of the moons of the solar system, in Satellites, edited by J. A. Burns and M. S. Matthews, pp. 224–292, Univ of Arizona Press, Tucson, 1986.Google Scholar
  39. Segatz, M., T. Spohn, M. N. Ross, and G. Schubert, Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io, Icarus, 75, 187–206, 1988.CrossRefGoogle Scholar
  40. Showman, A. P. and L. Han, Numerical simulations of convection in Eu-ropa’s ice shell: Implications for surface features, J. Geophys. Res., 109, doi:10.1029/2003JE002103, 2004.Google Scholar
  41. Sotin, C., O. Grasset, and S. Beauchesne, Thermodynamic properties of high pressure ices: Implications for the dynamics and internal structure of large icy satellites, in Solar System Ices, edited by B. Schmitt et al., pp. 79–96, Kluwer Academic Press, Dordrecht, 1998.CrossRefGoogle Scholar
  42. Spencer, J. R., L. K. Tamppari, T. Z. Martina, and L. D. Travis, Temperatures on Europa from Galileo photopolarimeter-radiometer: Nighttime thermal anomalies, Science, 284, 1514–1516, 1999.CrossRefGoogle Scholar
  43. Squyres, S. W., The evolution of tectonic features on Ganymede, Icarus, 52, 545–559, 1982.CrossRefGoogle Scholar
  44. Squyres, S. W. and K. C. Croft, The tectonics on icy satellites, in Satellites, edited by J. A. Burns and M. S. Matthews, pp. 293–341, Univ of Arizona Press, Tucson, 1986.Google Scholar
  45. Steiger, R. H. and E. Jager, Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmo-chronology, Earth Planet. Sci. Lett., 36, 359–362, 1977.CrossRefGoogle Scholar
  46. Sullivan, R., R. Greeley, K. Homan, J. Klemaszewski, M. J. S. Belton, M. H. Carr, C. R. Chapman, R. Tufts, J. W. Head, R. T. Pappalardo, J. Moore, P. Thomas, and the Galileo Imaging Team, Episodic plate separation and fracture infill on the surface of Europa, Nature, 391, 371–373, 1998.CrossRefGoogle Scholar
  47. Tufts, B. R., R. Greenberg, G. Hoppa, and P. Geissler, Lithospheric dilation on Europa, Icarus, 146, 75–97, 2000.CrossRefGoogle Scholar
  48. Tobie, G., G. Choblet, and C. Sotin, Tidally heated convection: Constraints on Europa’s ice shell thickness, J. Geophys. Res., 108, doi:10.1029/2003JE002099, 2003.Google Scholar
  49. Turcotte, D. L. and G. Schubert, Geodynamics, 2nd ed., John Wiley, New York, 2002.CrossRefGoogle Scholar
  50. Zahnle, K., P. Schenk, H. Levison, and L. Dones, Cratering rates in the outer solar system, Icarus, 163, 263–289, 2003.CrossRefGoogle Scholar
  51. Zahnle, K., P. Schenk, L. Dones, and H. Levison, Cratering rates in the Jovian system, Workshop onEuropa’s icy shell: Past, Present, and Future, abstract 7052, 2004.Google Scholar
  52. Zuber, M. T. and E. M. Parmentier, Lithospheric stress due to radiogenic heating of an ice-silicate body: Implications for Ganymede’s tectonic evolution, Proc. Lunar Planet. Sci. Conf. 14th., in J. Geophys. Res. Suppl. 89, B429–B437, 1984.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2007

Authors and Affiliations

  1. 1.Earthquake Research InstituteUniversity of TokyoBunkyo-ku, TokyoJapan
  2. 2.Institute for Research on Earth EvolutionJapan Agency for Marine-Earth Science and TechnologyYokosukaJapan

Personalised recommendations