Advertisement

Earth, Planets and Space

, Volume 58, Issue 11, pp 1525–1528 | Cite as

Comment on “Earthquake cycles and physical modeling of the process leading up to a large earthquake”

Open Access
Comment

Keywords

Fault Zone Slip Velocity Slip Rate Cohesive Zone Traction Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abercrombie, R. E. and J. R. Rice, Can observations of earthquake scaling constrain slip weakening?, Geophys. J. Int., 162, 406–424, 2005.CrossRefGoogle Scholar
  2. Andrews, D. J., Rupture propagation with finite stress in antiplane strain, J. Geophys. Res., 81, 3575–3582, 1976a.CrossRefGoogle Scholar
  3. Andrews, D. J., Rupture velocity of plane strain shear crack, J. Geophys. Res., 81, 5679–5687, 1976b.CrossRefGoogle Scholar
  4. Andrews, D. J., A fault constitutive relation accounting for thermal pres-surization of pore fluid, J. Geophys. Res., 107(B12), 2363, doi: 10.1029/2002JB001942, ESE 15-1–15-8, 2002.CrossRefGoogle Scholar
  5. Bizzarri, A. and M. Cocco, Slip-weakening behavior during the propagation of dynamic ruptures obeying rate- and state-dependent friction laws, J. Geophys. Res., 108(B8), 2373, doi: 10.1029/2002JB002198, 2003.CrossRefGoogle Scholar
  6. Bizzarri, A. and M. Cocco, Thermal pressurization in 3-D dynamic spontaneous rupture models with cohesive zone, Eos Trans. AGU, 85(47), Fall Meet. Suppl., Abstract T23A-0572, 2004.Google Scholar
  7. Bizzarri, A. and M. Cocco, 3D dynamic simulations of spontaneous rupture propagation governed by different constitutive laws with rake rotation allowed, Ann. Geophys., 48(2), 279–299, 2005.Google Scholar
  8. Bizzarri, A. and M. Cocco, A thermal pressurization model for the spontaneous dynamic rupture propagation on a three-dimensional fault: 1. Methodological approach, J. Geophys. Res., 111, B05303, doi:10.1029/2005JB003862, 2006a.Google Scholar
  9. Bizzarri, A. and M. Cocco, A thermal pressurization model for the spontaneous dynamic rupture propagation on a three-dimensional fault: 2. Traction evolution and dynamic parameters, J. Geophys. Res., 111, B05304, doi:10.1029/2005JB003864, 2006b.Google Scholar
  10. Bizzarri, A., M. Cocco, D. J. Andrews, and E. Boschi, Solving the dynamic rupture problem with different numerical approaches and constitutive laws, Geophys. J. Int., 144, 656–678, 2001.CrossRefGoogle Scholar
  11. Brodsky, E. E. and H. Kanamori, Elastohydrodynamic lubrication of faults, J. Geophys. Res., 106(B8), 16,357–16,374, 2001.CrossRefGoogle Scholar
  12. Campillo, M. and I. R. Ionescu, Initiation of antiplane shear instability under slip dependent friction, J. Geophys. Res., 102(B9), 20,363–20,371, 1997.CrossRefGoogle Scholar
  13. Chester, F. M. and J. S. Chester, Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California, Tectonophysics, 295, 199–221, 1998.CrossRefGoogle Scholar
  14. Cocco, M. and A. Bizzarri, On the slip-weakening behavior of rate- and state-dependent constitutive laws, Geophys. Res. Lett., 29(11), 11–1–11–4, 2002.CrossRefGoogle Scholar
  15. Day, S. M., Three-dimensional finite difference simulation of fault dynamics: Rectangular faults with fixed rupture velocity, Bull. Seismol. Soc. Am., 72, 705–727, 1982.Google Scholar
  16. Di Toro, G., D. L. Golsdby, and T. T. Tullis, Friction falls towards zero in quartz rock as slip velocity approaches seismic rates, Nature, 427, 436–439, 2004.CrossRefGoogle Scholar
  17. Dieterich, J. H. and B. Kilgore, Implications of fault constitutive properties for earthquake prediction, Proc. Natl. Acad. Sci. USA, 93, 3787–3794, 1996.CrossRefGoogle Scholar
  18. Ida, Y., Cohesive force across the tip of a longitudinal—shear crack and Griffith’s specific surface energy, J. Geophys. Res., 77(20), 3796–3805, 1972.CrossRefGoogle Scholar
  19. Mair, K. and C. Marone, Shear heating in granular layers, Pure Appl. Geophys., 157, 1847–1866, 2000.CrossRefGoogle Scholar
  20. Ohnaka, M., A constitutive scaling law and a unified comprehension for frictional slip failure, shear fracture of intact rock, and earthquake rupture, J. Geophys. Res., 108, 2080, doi: 10.1029/2002JB000123, 2003.CrossRefGoogle Scholar
  21. Ohnaka, M., Earthquake cycles and physical modeling of the process leading up to a large earthquake, Earth Planets Space, 56, 773–793, 2004.CrossRefGoogle Scholar
  22. Ohnaka, M. and T. Yamashita, A cohesive zone model for dynamic shear faulting based on experimentally inferred constitutive relation and strong motion source parameters, J. Geophys. Res., 94(B4), 4089–4104, 1989.CrossRefGoogle Scholar
  23. Ohnaka, M., Y. Kuwahara, and K. Yamamoto, Constitutive relations between dynamic physical parameters near a tip of the propagation slip zone during stick-slip shear failure, Tectonophysics, 144, 109–125, 1987.CrossRefGoogle Scholar
  24. Okubo, P. G. and J. H. Dieterich, Effects of physical fault properties on frictional instabilities produced on simulated faults, J. Geophys. Res., 89, 5817–5827, 1984.CrossRefGoogle Scholar
  25. Okubo, P. G. and J. H. Dieterich, State variable fault constitutive relations for dynamic slip, in Earthquake Source Mechanics, Geophysical Monograph, 37, Maurice Ewing Series, 6, edited by S. Das, J. Boatwright, and C. Scholz, Am. Geophys. Union, Washington D.C., 25–35, 1986.CrossRefGoogle Scholar
  26. Olsen, K. B., R. Madariaga, and R. J. Archuleta, Three-dimensional dynamic simulation of the 1992 Landers earthquake, Science, 278, 834–838, 1997.CrossRefGoogle Scholar
  27. Rice, J. R., Flash heating at asperity contacts and rate-dependent friction, Eos Trans. AGU, 80(46), Fall Meet. Suppl., p. F471, 1999.Google Scholar
  28. Richardson, E. and C. Marone, Effects of normal stress vibrations on frictional healing, J. Geophys. Res., 104(B12), 28,859–28,878, 1999.CrossRefGoogle Scholar
  29. Scholz, C. H., Earthquakes and friction laws, Nature, 391, 37–42, 1998.CrossRefGoogle Scholar
  30. Sibson, R. H., Thickness of the seismic slip zone, Bull. Seism. Soc. Am., 93(3), 1169–1178, 2003.CrossRefGoogle Scholar
  31. Sleep, N. H., Application of a unified rate and state friction theory to the mechanics of fault zones with strain localization, J. Geophys. Res., 102(B2), 2875–2895, 1997.CrossRefGoogle Scholar
  32. Sleep, N. H., E. Richardson, and C. Marone, Physics of friction and strain rate localization in synthetic fault gouge, J. Geophys. Res., 106(B11), 25,875–25,890, 2000.CrossRefGoogle Scholar
  33. Tinti, E., A. Bizzarri, A. Piatanesi, and M. Cocco, Estimates of slip weakening distance for different dynamic rupture models, Geophys. Res. Lett., 31(L02611), doi: 10.1029/2003GL018811, 2004.Google Scholar
  34. Tsutsumi, A. and T. Shimamoto, High-velocity frictional properties of gabbro, Geophys. Res. Lett., 24, 699–702, 1997.CrossRefGoogle Scholar
  35. Tullis, T. E. and D. Goldsby, Laboratory experiments on fault shear resistance relevant to coseismic earthquake slip, SCEC Annual Report for 2003, 2003.Google Scholar
  36. Wilson, B., T. Dewers, and Z. Reches, Surface area and surface energy of fault gouge: observations of the San Andreas gouge in Tejon Pass area, California (abstract), Seismol. Soc. Am. Meet. 2004, 2004.Google Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2006

Authors and Affiliations

  1. 1.Istituto Nazionale di Geofisica e VulcanologiaSezione di BolognaBolognaItaly
  2. 2.Istituto Nazionale di Geofisica e VulcanologiaSezione di Sismologia e TettonofisicaRomaItaly

Personalised recommendations