Earth, Planets and Space

, Volume 58, Issue 10, pp 1349–1358 | Cite as

Paleomagnetism of the Pleistocene Tequila Volcanic Field (Western Mexico)

  • Maria Rodríguez Ceja
  • Avto Goguitchaichvili
  • Manuel Calvo-Rathert
  • Juan Morales-Contreras
  • Luis Alva-Valdivia
  • José Rosas Elguera
  • Jaime Urrutia Fucugauchi
  • Hugo Delgado Granados
Open Access


This paper presents new paleomagnetic results from 24 independent cooling units in Tequila area (western Trans-Mexican Volcanic Belt). These units were recently dated by means of state-of-the-art 40Ar-39Ar method (Lewis-Kenedy et al., 2005) and span from 1130 to 150 ka. The characteristic paleodirections are successfully isolated for 20 cooling units. The mean paleodirection, discarding intermediate polarity sites, is I = 29.6°, D = 359.2°, k = 26, α95 = 7.1°, n = 17, which corresponds to the mean paleomagnetic pole position Plat = 85.8°, Plong = 84.3°, K = 27.5, A95 = 6.9°. These directions are practically undistinguishable from the expected Plestocene paleodirections, as derived from reference poles for the North American polar wander curve and in agreement with previously reported directions from western Trans-Mexican Volcanic Belt. This suggests that no major tectonic deformation occurred in studied area since early-middle Plestocene to present. The paleosecular variation is estimated trough the study of the scatter of virtual geomagnetic poles giving SF = 15.4 with SU = 19.9 and SL = 12.5 (upper and lower limits respectively). These values are consistent with those predicted by the latitude-dependent variation model of McFadden et al. (1991) for the last 5 Myr. The interesting feature of the paleomagnetic record obtained here is the occurrence of an intermediate polarity at 671 ± 13 ka which may correspond the worldwide observed Delta excursion at about 680–690 ka. This gives the volcanic evidence of this event. Two independent lava flows dated as 362 ±13 and 354 ±5 ka respectively, yield transitional paleodirections as well, probably corresponding to the Levantine excursion.

Key words

Paleomagnetism rock-magnetism paleosecular variation magnetic stratigraphy Western Mexico 


  1. Alva-Valdivia, L. M., A. Goguitchaichvili, L. Ferrari, J. Rosas-Elguera, J. Urrutia-Fucugauchi, and J. J. Zamorano-Orozco, Paleomagnetic data from the Trans-Mexican Volcanic Belt: implications for tectonics and volcanic stratigraphy, Earth Planets Space, 52, 467–478, 2000.CrossRefGoogle Scholar
  2. Alva-Valdivia, L. M., A. Goguitchaichvili, and J. Urrutia-Fucugauchi, Further Constraints for the Plio-Pleistocene Geomagnetic Field Strength: new results from Los Tuxtlas volcanic field (Mexico), Earth Planets Space, 53(9), 873–881, 2001.CrossRefGoogle Scholar
  3. Berggren, W. A., D. V. Kent, C. C. III Swisher, and M. P. Aubry, A revised Cenozoic Geochronology and Chronostratigraphy, in Geochronology Time Scales and Global Stratigraphic Correlation, edited by W. A. Berggren, D. V. Kent, M. P. Aubry, and J. Hardenbol, SEPM Spec. Pub., 54, 130–212, 1995.Google Scholar
  4. Besse, J. and V. Courtillot, Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr, J. Geophys. Res., 107(B11), doi 1029/2000JB000050, 2002.Google Scholar
  5. Biswas, D. K., M. Hyodo, Y. Taniguchi, M. Kaneko, S. Katoh, H. Sato, Y. Kinugasa, and K. Mizuno, Magnetostratigraphy of Plio-Pleistocene sediments in a 1700-m core from Osaka Bay, Southwestern Japan, short geomagnetic events in the middle Matuyama, early Bruñes chrons, Paleogeogr. Plaoeclimatol. Paleoecol., 148, 233–248, 1999.CrossRefGoogle Scholar
  6. Bohnel, H., J. Urrutia-Fucugauchi, and E. Herrero-Bervera. Paleomagnetic data from central Mexico and their use for paleosecular variation studies, Phys. Earth Planet. Inter., 64, 224–236, 1990.CrossRefGoogle Scholar
  7. Camps, P. and M. Prévot, A statistical model of the fluctuations in the geomagnetic field from paleosecular variation to reversal, Science, 273, 776–779, 1996.CrossRefGoogle Scholar
  8. Cande, S. C. and D. V. Kent, A new geomagnetic polarity time scale for the late Cretaceous and Cenozoic, J. Geophys. Res., 97, 13917–13951, 1992.CrossRefGoogle Scholar
  9. Cande, S. C. and D. V. Kent, Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic, J. Geophys. Res., 100, 6093–6095, 1995.CrossRefGoogle Scholar
  10. Carcaillet, J. T., D. Bourles, and N. Thouveny, Geomagnetic dipole moment and 10Be production rate intercalibration from authigenic 10Be/9Be for the last 1.3 Ma, Geochem. Geoph., Geosyst., 5(5), doi 1029/2003GC000641, 2004.Google Scholar
  11. Champion, D. E., G. B. Dalrymple, and M. A. Kunz, Radiometric and paleomagnetic evidence for the Emperor reversed polarity event at 0.46 m.y. in basalt lava flows from the eastern Snake River Olain, Idaho, Geophys. Res. Lett., 8, 1055–1058, 1981.CrossRefGoogle Scholar
  12. Champion, D. E., M. A. Lanphere, and M. A. Kunz, Evidence for a new geomagnetic polarity reversal from lava flows in Idaho: Discussion of short polarity reversals in the Brunhes and late Matuyama polarity chrons, J. Geophys. Res., 93, 11667–11680, 1988.CrossRefGoogle Scholar
  13. Coe, R. S., B. S. Singer, M. Pringle, and X. Zhao, Matuyama-Brunhes reversal and Kamikatsura event on Maui: paleomagnetic directions, 40Ar/39Ar ages and implications, Earth Planet. Sci. Lett., 222, 667–684, 2004.CrossRefGoogle Scholar
  14. Cox, A., Lengths of geomagnetic polarity intervals, J. Geophys. Res., 73, 3247–3260, 1968.CrossRefGoogle Scholar
  15. Cox, A., Confidence limits for the precision parameter k, Geophys. J. R. astr. Soc., 18, 545–549, 1969.CrossRefGoogle Scholar
  16. Creer, K. M., P. Readman, and A. M. Jacobs, Paleomagnetic and paleontological dating of a section at Gioia Tauro, Italy: Identification of the Blake event, Earth Planet. Sci. Lett., 50, 289–300, 1980.CrossRefGoogle Scholar
  17. Day, R., M. Fuller, and V. A. Schmidt, Hysteresis properties of titanomagnetites: Grain-size and compositional dependence, Phys. Earth Planet. Inter., 13, 260–267, 1977.CrossRefGoogle Scholar
  18. Doell, R. and A. Cox, Pacific geomagnetic secular variation, Science, 71, 248–254, 1971.CrossRefGoogle Scholar
  19. Doell, R. and A. Cox, The Pacific geomagnetic secular variation anomaly and the question of lateral uniformity in the lower mantle, in The Nature of the Solid Earth, edited by E. C. Robertson, McGraw-Hill, New York, pp. 245–284, 1972.Google Scholar
  20. Dunlop, D. J., Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc), Theoretical curves and tests using titanomagnetite data, J. Geophys. Res., 107, doi:10.1029/2001JB000486, 2002.Google Scholar
  21. Dunlop, D. and O. Özdemir, Rock-magnetism, Fundamentals and Frontiers, Cambridge University Press, pp. 573, 1997.CrossRefGoogle Scholar
  22. Goguitchaichvili, A. and M. Prévot, Magnetism of oriented single crystals of hemo-ilmenite showing self-reversal of thermoremanent magnetization, J. Geophys. Res., 105, 2761–2781, 2000.CrossRefGoogle Scholar
  23. Harland, W. B., R. Amstrong, A. Cox, L. E. Craig, A. G. Smith, and D. G. Smith, A Geological Time Scale 1989, Cambridge University press, Oxford, 1990.Google Scholar
  24. Heider, F. and D. J. Dunlop, Two types of chemical remanent magnetization during oxidation of magnetite, Phys. Earth Planet. Inter., 46, 24–45, 1987.CrossRefGoogle Scholar
  25. Herrero-Bervera, E., J. Urrutia-Fucugauchi, A. Martin del Pozzo, H. Bohnel, and J. Guerrero, Normal amplitude Brunhes paleosecular variation at low-latitudes: A paleomagnetic record from the Trans-Mexican Volcani Belt, Geophys. Res. Lett., 13, 1442–1445, 1986.CrossRefGoogle Scholar
  26. Kirschvink, J. L., The least-square line and plane and analysis of paleo-magnetic data, Geophys. J. R. astr. Soc., 62, 699–718, 1980.CrossRefGoogle Scholar
  27. Klitgord, K. D. and J. Mammerickx, Northern East Pacific Rise-Magnetic anomaly and bathymetric framework, J. Geophys. Res., 87, 6725–6783, 1982.CrossRefGoogle Scholar
  28. Knudsen, M. F., N. Abrahamsen, and P. Riisager, Paleomagnetic evidence from Cape Verde Islands basalts for fully reversed excursions in the Brunhes Chron, Earth Planet. Sci. Lett., 206, 199–214, 2003.CrossRefGoogle Scholar
  29. Lewis-Kenedy, C. B., R. A. Lange, C. M. Hall, and H. Delgado-Granados, The eruptive history of the Tequila volcanic field, western Mexico: ages, volumes and relative proportions of lava types, Bull. Volcanol., 67, 391–414, 2005.CrossRefGoogle Scholar
  30. Love, J. J., Palaeomagnetic secular variation as a function of intensity, Philos. Trans. R. Soc., 358, 1191–1223, 2000.CrossRefGoogle Scholar
  31. Lund, S.O., G. Acton, B. Clement, M. Hastedt, M. Okada, and T. Williams, Geomagnetic field excursions occurred often during the last million years, EOS Trans. AGU, 78(14), spring meet. Suppl., S178–S179, 1998.Google Scholar
  32. Mankinen, E. A., M. Prévot, C. S. Grommé, and R. Coe, The Steens Mountain (Oregon) geomagnetic polarity transition 1, Directional history, duration of episodes and rock-magnetism, J. Geophys. Res., 90, 10393–10416, 1985.CrossRefGoogle Scholar
  33. McFadden, P., T. Merrill, and W. McElhinny, Dipole/quadrupole family modeling of paleosecular variation, J. Geophys. Res., 93, 11,583–11,588, 1988.CrossRefGoogle Scholar
  34. McFadden, P., T. Merrill, W. McElhinny, and S. Lee, Reversals of the Earths magnetic field and temporal variations of the dynamo families, J. Geophys. Res., 96, 3923–3933, 1991.CrossRefGoogle Scholar
  35. McWilliams, M., R. Holcomb, and D. Champion, Geomagnetic secular variation from 14C dated lava flows on Hawaii and the question of the Pacific non-dipole low, Phil. Trans. R. Soc. Lond., A306, 211–222, 1982.CrossRefGoogle Scholar
  36. Mejia, V., H. Bohnel, M. A. Ortega-Rivera, J. Lee, and J. Aranda-Gomez, Paleosecular variation and time-averaged field recorded in Late Pliocene-Holocene lava flows from Mexico, Geochem. Geophys. Geosyst., 6, doi:10.1029/2004GC000871, 2005.Google Scholar
  37. Morales, J., A. Goguitchaichvili, and J. Urrutia-Fucugauchi, A rock-magnetic and paleointensity study of some Mexican volcanic lava flows during the Latest Pleistocene to the Holocene, Earth Planets Space, 53, 839–902, 2001.CrossRefGoogle Scholar
  38. Negrini, R. M., K. Verosub, and J. O. Davis, The middle to late Pleistocene geomagnetic field recorded in fine-grained sediments from Summer lake (Oregon) and double Hot Spring (Nevada), USA, Earth Planet. Sci. Lett., 87, 173–192, 1988.CrossRefGoogle Scholar
  39. Nishitani, T. and M. Kono, Effects of low-temperature oxidation on the remanence properties of titanomagnetites, J. Geomag. Geoelectr., 41, 19–38, 1989.CrossRefGoogle Scholar
  40. Opdyke, N. D. and J. E. T. Channell, Magnetic Stratigraphy, (ed. Academic Press), 246 pp., 1996.Google Scholar
  41. Özdemir, Ö. and D. J. Dunlop, Chemico-viscous remanent magnetization in Fe3O4-γFe2O3 system, Science, 243, 1043–1047, 1989.CrossRefGoogle Scholar
  42. Petronille, M., A. Goguitchaichvili, B. Henry, L. Alva-Valdivia, J. Rosas-Elguera, M. Rodríguez Ceja, and M. Calvo-Rathert, Paleomagnetism of Ar-Ar dated lava flows from the Ceboruco-San Pedro volcanic field (western Mexico): Evidence for the Matuyama-Brunhes transition precursor and a fully reversed geomagnetic event in the Brunhes chron, J. Geophys. Res., 110, b08101, doi:10.1029/2004jb003321, 2005.Google Scholar
  43. Prévot, M., E. A. Mankinen, S. Grommé, and A. Lecaille, High paleointensities of the geomagnetic field from thermomagnetic study on rift valley pillow basalts from the mid-atlantic ridge, J. Geophys. Res., 88, 2316–2326, 1983.CrossRefGoogle Scholar
  44. Prévot, M., R. S. Mainkinen, R. Coe, and S. Grommé, The Steens Mountain (Oregon) geomagnetic polarity transition 2. Field intensity variations and discussion of reversal models, J. Geophys. Res., 90, 10417–10448, 1985.CrossRefGoogle Scholar
  45. Ryan, W. B., Stratigraphy of late Quaternary sediments in the eastern Mediteranean, in The Mediteranean Sea, edited by D. J. Stanley, pp. 149–169, Dowden, Hutchinson & Ross, Stroudsburg, 1972.Google Scholar
  46. Singer, B. S., M. K. Relle, K. A. Hoffman, A. Battle, C. Laj, H. Guillou, and J. Carracedo, Ar/Ar ages from transitionally magnetized lavas on La Palma, Canary Island, and the geomagnetic instability timescale, J. Geophys. Res., 107(B11), 10.1029/2001JB001613, 2002.Google Scholar
  47. Steele, K. W., Paleomagnetic constraints on the volcanic history of Iztac-cihuatl, Geofisica Internacional, 24, 159–167, 1985.Google Scholar
  48. Tauxe, L., Sedimentary records of relative paleointensity: Theory and practice, Rev. Geophys., 31, 319–354, 1993.CrossRefGoogle Scholar
  49. Tauxe, L., T. A. T. Mullender, and T. Pick, Pot-bellies, wasp-waists and superparamagnetism in magnetic hysteresis, J. Geophys. Res., 95, 12337–12350, 1996.CrossRefGoogle Scholar
  50. Torii, M., S. Yoshikawa, and M. Itihara, Paleomagnetism on the water-laid volcanic ash layers in the Osaka Group, Sennan and Senpoku hills, southwest Japan, Paleogeophys., 2, 34–37, 1974.Google Scholar
  51. Urrutia-Fucugauchi, J., Comments on “A new method to determine paleosecular variation” by D. Vandamme, Phys. Earth Planet. Inter., 102, 295–300, 1997.CrossRefGoogle Scholar
  52. Yaskawa, K., Reversals, excursions and secular variations of the geomagnetic field in the Brunhes normal polarity epoch, in Paleolimnology of Lake Biwa and the Japanese Pleistocene, edited by S. Horie, pp. 77–88, Kyoto University Press, 1974.Google Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2006

Authors and Affiliations

  • Maria Rodríguez Ceja
    • 1
  • Avto Goguitchaichvili
    • 1
    • 2
  • Manuel Calvo-Rathert
    • 3
  • Juan Morales-Contreras
    • 1
  • Luis Alva-Valdivia
    • 1
  • José Rosas Elguera
    • 4
  • Jaime Urrutia Fucugauchi
    • 1
  • Hugo Delgado Granados
    • 5
  1. 1.Laboratorio de Paleomagnetismo, Instituto de GeofísicaUniversidad Nacional Autónoma de MéxicoMéxico
  2. 2.Laboratorio Interinstitucional de Magnetismo Natural, Instituto de GeofísicaUniversidad Nacional Autónoma de MéxicoCoeneoMéxico
  3. 3.Dpto. de Física, E. P. S.Universidad de BurgosBurgosSpain
  4. 4.Centro de Ciencias de la TierraUniversidad de GuadalajaraGuadalajaraMéxico
  5. 5.Departamento de Vulcanología, Instituto de GeofísicaUniversidad Nacional Autónoma de MéxicoMéxico

Personalised recommendations