Advertisement

Earth, Planets and Space

, Volume 58, Issue 10, pp 1255–1272 | Cite as

Paleomagnetism in Mesozoic rocks of the Northern Andes and its Implications in Mesozoic Tectonics of Northwestern South America

  • Germán Bayona
  • Augusto Rapalini
  • Vincenzo Costanzo-Alvarez
Open Access
Article

Abstract

New paleomagnetic data isolated in Upper Triassic to Aptian rocks exposed in the Colombian Andes and west of the Guyana craton, in conjunction with paleomagnetic data from the Andes of Venezuela and the South American craton, permit the interpretation of along-margin northward translations of Andean Colombian terranes during the Early-Middle Jurassic. Field tests and comparison with reference paleopoles for South America indicate that characteristic components uncovered in red-siliciclastic and igneous rocks are primary, or near-depositional, and they are carried dominantly by hematite, magnetite and Ti-magnetite. Difference in declination values of characteristic components isolated in fault-bounded blocks document counter-clockwise rotations previous to syn-extensional deposition. The Jurassic tectonic scheme proposed here for the northwestern corner of South America shows an Early Jurassic, linear subduction-related magmatic arc evolving to Late Jurassic rift-related setting associated to the opening of the Proto-Caribbean Ocean and westward retreat of the subduction zone. A similar tectonic evolution for the Jurassic has been proposed for southwestern USA and the Nazas arc in Mexico.

Key words

Paleomagnetism Jurassic Northern Andes Tectonics 

References

  1. Altenberger, U. and A. H. Concha-Perdomo, Late Lower to early Middle Jurassic arc magmatism in the northern Ibague-Batholith/Colombia, Geologia Colombiana, 30, 87–97, 2005.Google Scholar
  2. Aspden, J. A., W. McCourt, and M. Brook, Geochemical control of subduction-related magmatism: the Mesozoic and Cenozoic plutonic history of Western Colombia, J. Geol. Soc. London, 144, 893–905, 1987.CrossRefGoogle Scholar
  3. Ayala-Calvo, R. C., G. Veloza, G. Bayona, M. Gomez-Casallas, A. E. Rapalini, V. Costanzo-Álvarez, and M. Aldana, Paleomagnetismo y mineralogía magnética en las unidades del Mesozoico de Bucaramanga y Macizo de Floresta, Geología Colombiana, 30, 49–66, 2005.Google Scholar
  4. Bartolini, C., H. Lang, and T. Spell, Geochronology, Geochemistry and Tectonic setting of the Mesozoic Nazas arc in North-Central Mexico, and its continuations to Northern South America, in The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation and Plate Tectonics, edited by C. Bartolini, R. Buffler, and J. Blickwede, AAPG Memoir, 79, 427–461, 2003.Google Scholar
  5. Bayona, G., D. Garcia, and G. Mora, La Formación Saldaña: producto de la actividad de estratovolcanes continentales en un dominio de retroarco, in Estudios Geológicos del Valle Superior del Magdalena, edited by F. Etayo-Serna, 21 pp., Universidad Nacional de Colombia, Chapter I, Bogotá, 1994.Google Scholar
  6. Bayona, G., C. Silva, A. E. Rapalini, V. Costanzo-Álvarez, M. Aldana, and J. Roncancio, Paleomagnetismo y mineralogía magnética en rocas de la Fm. Saldaña y unidades Cretácicas suprayacentes en la parte norte del Valle Superior del Magdalena, Boletín de Geología, 27, 69–85, 2005.Google Scholar
  7. Cajas, L., Estudio petrográfico de la Formación Saldaña entre los municipios de Alpujarra y Natagaima [Undergraduate thesis], Universidad Nacional de Colombia, Bogotá, 2003.Google Scholar
  8. Castañeda, R., Caracterización petrográfica y geoquímica de la Formación Saldaña en un área del macizo Colombiano entre los departamentos de Cauca-Nariño y Putumayo [Undergraduate thesis], Universidad Nacional de Colombia, Bogotá, 2002.Google Scholar
  9. Castillo, J., W. A. Gose, and A. Perarnau, Paleomagnetic results from Mesozoic strata in the Mérida Andes, Venezuela, J. Geophys. Res., 96, 6011–6022, 1991.CrossRefGoogle Scholar
  10. Cediel, F., R. Shaw, and C. Caceres, Tectonic Assembly of the Northern Andean block, in The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation and Plate Tectonics, edited by C. Bartolini, R. Buffler, and J. Blickwede, AAPG Memoir, 79, 815–848, 2003.Google Scholar
  11. Christie-Blick, N. and K. Biddle, Deformation and basin formation along strike-slip faults, in Strike-slip deformation, basin formation and sedimentation: Tulsa, Oklahoma, edited by K. Biddle and N. Christie-Blick, Society of Economic Paleontologist and Mineralogist Special Publication, 37, 1–34, 1985.CrossRefGoogle Scholar
  12. Cordani, U., A. Cardona, D. Jimenez, D. Liu, and A. Nutman, Geochronology of Proterozoic basement inliers from the Colombian Andes: Tectonic history of Remnants from a fragmented Grenville belt, in Terrane Processes at the Margins of Gondwana, edited by A. P. M. Vaughan, P. T. Leat, and R. J. Pankhurst, R. J., Geological Society, London, Special Publication, 246, 239–246, 2005.Google Scholar
  13. Cortés, M., B. Colleta, and J. Angelier, Structure and Tectonics of the Central Segment of the Eastern Cordillera of Colombia, Journal of South American Earth Sciences, (in press).Google Scholar
  14. Demarest, H. H., Jr., Error analysis for the determination of tectonic rotation from paleomagnetic data, J. Geophys. Res., 88, 4321–4328, 1983.CrossRefGoogle Scholar
  15. Dickinson, W. R. and T. F Lawton, Carboniferous to Cretaceous assembly and fragmentation of Mexico, Geological Society of America Bulletin, 113, 1142–1160, 2001.CrossRefGoogle Scholar
  16. Dimitriadis, S., D. Kondopoulou, and A. Atzemoglou, Dextral rotations and tectonomagnetic evolution of the southern Rhopode and adjacent regions (Greece), Tectonophysics, 299, 159–173, 1998.CrossRefGoogle Scholar
  17. Dorr, W., J. R. Grosser, G. I. Rodriguez, and U. Kramm, Zircon U/Pb age of the Paramo Rico tonalite-granodiorite, Santander massif (Cordillera Oriental, Colombia) and its geotectonic significance, Journal of South American Earth Sciences, 8, 187–194, 1995.CrossRefGoogle Scholar
  18. Ernesto, M., G. Bellieni, E. Piccirillo, L. Marques, A. De Min, I. Pacca, G. Martins, and J. Macedo, Paleomagnetic, geochronological and geochemical constraints on time and duration of the Mesozoic igneous activity in Northeastern Brazil, In the Central Atlantic Magmatic province, Amer. Geophys. Union, Monograph Series, 136, 129–149, 2002.Google Scholar
  19. Estrada, J., Paleomagnetism and accretion events in the northern Andes, Ph.D. Dissertation thesis, State University of New York, Binghamton, 1995.Google Scholar
  20. Etayo-Serna, F., G. Renzoni, and D. Barrero, Contornos sucesivos del mar Cretácico en Colombia, Memorias Primer Congreso Colombiano de Geología, Bogotá, Colombia, 217–252, 1976.Google Scholar
  21. Etayo-Serna, F., D. Barrero, H. Lozano, and other 15 authors, Mapa de Terrenos Geológicos de Colombia, 235 pp., Ingeominas, Bogotá, 1983.Google Scholar
  22. Fisher, R. A., Dispersion on a sphere, Proceedings of the Royal Society of London, Series A, 217, 295–305, 1953.CrossRefGoogle Scholar
  23. Forero, A., The basement of the Eastern Cordillera, Colombia: An allochthonous terrane in northwestern South America, Journal of South American Earth Sciences, 3, 141–151, 1990.CrossRefGoogle Scholar
  24. Gose, W. A., A. Perarnau, and J. Castillo, Paleomagnetic results from the Perijá Mountains, Venezuela: an example of vertical axis rotation, in The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation and Plate Tectonics, edited by C. Bartolini, R. Buffler, and J. Blickwede, AAPG Memoir, 79, 969–975, 2003.Google Scholar
  25. Hargraves, R. B., R. Shagam, R. Vargas, and G. I. Rodriguez, Paleomagnetic results from rhyolites (early Cretaceous?) and andesite dikes at two localities in the Ocaña area, northern Santander massif, Colombia, in The Caribbean-South American Plate Boundary and Regional Tectonics, edited by W. E. Bonini, R. B. Hargraves, and R. Shagam, Geological Society of America Memoir, 162, 299–302, 1984.CrossRefGoogle Scholar
  26. Iglesia Llanos, M. P., R. Lanza, A. C. Riccardi, S. Geuna, M. A. Laurenzi, and R. Ruffini, Palaeomagnetic study of the El Quemado complex and Marifil Formation, Patagonian Jurassic igneous province, Argentina, Geophys. J. Int., 154, 599–617, 2003.CrossRefGoogle Scholar
  27. Jaillard, E. P., P. Solar, G. Carlier, and T. Mourier, Geodynamic evolution of the northern and central Andes during early to middle Mesozoic times: a Tethyan model, J. Geol. Soc. London, 147, 1009–1022, 1990.CrossRefGoogle Scholar
  28. Kerr, A. and J. Tarney, Tectonic evolution of the Caribbean and northwestern South America: The case for accretion of two Late Cretaceous oceanic plateaus, Geology, 33, 269–272, doi:10.1130/G21109.1, 2005.CrossRefGoogle Scholar
  29. Kirschvink, J., The least-squares line and plane and the analysis of palaeomagnetic data, Geophys. J. Roy. Astro. Soc., 62, 699–718, 1980.CrossRefGoogle Scholar
  30. Lowrie, W., Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties, Geophys. Res. Lett., 17, 159–162, 1990.CrossRefGoogle Scholar
  31. MacDonald, W. D. and N. D. Opdyke, Tectonic rotations suggested by paleomagnetic results from northern Colombia, South America, J. Geophys. Res., 77, 539–546, 1972.Google Scholar
  32. MacDonald, W. D. and N. D. Opdyke, Preliminary paleomagnetic results from Jurassic rocks of the Santa Marta massif, Colombia, in The Caribbean-South American Plate Boundary and Regional Tectonics, edited by W. E. Bonini, R. B. Hargraves, and R. Shagam, Geological Society of America Memoir, 162, 295–298, 1984.CrossRefGoogle Scholar
  33. Maze, W. B., Jurassic La Quinta Formation in the Sierra de Perijá, northwestern Venezuela; geology and tectonic environment of red beds and volcanic rocks, in The Caribbean-South American Plate Boundary and Regional Tectonics, edited by W. E. Bonini, R. B. Hargraves, and R. Shagam, Geological Society of America Memoir, 162, 263–282, 1984.CrossRefGoogle Scholar
  34. McElhinny, M. W., Statistical significance of the fold test in paleomag-netism, Geophys. J. Roy. Astro. Soc, 8, 338–340, 1964.CrossRefGoogle Scholar
  35. McElhinny, M. W. and P. L. McFadden, Paleomagnetism: Continents and Oceans, 386 pp., Academic Press, London, 2000.Google Scholar
  36. McFadden, P. L. and M. W. McElhinny, Classification of the reversal test in Paleomagnetism, Geophys. J. Int., 103, 725–729, 1990.CrossRefGoogle Scholar
  37. McFadden, P. L. and A. B. Reid, Analysis of paleomagnetic inclination data, Geophys. J. Roy. Astro. Soc., 69, 307–319, 1982.CrossRefGoogle Scholar
  38. Mojica, J., A. Kammer, and G. Ujueta, El Jurásico del sectornoroccidental de Suramérica y guía de la excursión al Valle Superior del Magdalena (Nov. 1–4/95), Regiones de Payande y Prado, Departamento del Tolima, Colombia, Geología Colombiana, 21, 3–40, 1996.Google Scholar
  39. Pindell, J. L. and K. D. Tabbutt, Mesozoic-Cenozoic Andean paleogeography and regional controls on hydrocarbon systems, in Petroleum basins of South America: Tulsa, edited by A. J. Tankard, R. Suarez, and H. J. Welsink, AAPG Memoir, 62, 101–128, 1995.Google Scholar
  40. Randall, D., A new Jurassic-Recent apparent polar wander path for South America and a review of central Andean tectonic models, Tectonophysics, 299, 49–74, 1998.CrossRefGoogle Scholar
  41. Restrepo-Pace, P., Petrotectonic characterization of the central Andean terrane, Colombia, Journal of South American Earth Sciences, 5, 97–116, 1992.CrossRefGoogle Scholar
  42. Restrepo-Pace, P., Late Precambrian to Early Mesozoic Tectonic Evolution of the Colombian Andes, Based on New Geochronological, Geochemical and Isotopic Data, Ph.D. Dissertation thesis, Tucson, The University of Arizona, 1995.Google Scholar
  43. Restrepo-Pace, P., J. Ruiz, G. Gehrels, and M. Cosca, Geochronology and Nd isotopic data of Grenville-age rocks in the Colombian andes: new constraints for Late Proterozoic-Early Paleozoic paleocontinental reconstructions of the Americas, Earth and Planetary Science Letters, 150, 427–441, 1997.CrossRefGoogle Scholar
  44. Rowan, M. and R. Linares, Fold-Evolution Matrices and Axial-Surface Analysis of Fault-Bend Folds: Application to the Medina Anticline, Eastern Cordillera, Colombia, American Association of Petroleum Geologists Bulletin, 84, 741–764, 2000.Google Scholar
  45. Sarmiento-Rojas, L. F., Mesozoic Rifting and Cenozoic Basin Inversion History of the Eastern Cordillera, Colombian Andes; Inferences from tectonic models: Bogotá, ECOPETROL-Netherlands Research School of Sedimentary Geology, 295 pp., 2001.Google Scholar
  46. Scott, G. R., Translation of accretionary slivers: Triassic results from the Central Cordillera of Colombia, EOS-Transactions Fall meeting supplements, 59(12), American Geophysical Union, 1058–1059, 1978.Google Scholar
  47. Somoza, R., El campo magnético Cretácico desde una perspectiva americana, 15th Congreso Geologico Argentino, El Calafate, Argentina, Actas 1, 88–93, 2002.Google Scholar
  48. Vasquez, M., G. Bayona, and R. L. Romer, Geochemistry of Jurassic volcanic Rocks of the Northern Andes: Insights for the Mesozoic Evolution of Northwestern Gondwana, 2006 Backbone of the Americas meeting, Geological Society of American and the Asociacion Geológica Argentina, 2006.Google Scholar
  49. Vizán, H., R. Ixer, P. Turner, J. M. Cortés, and G. Cladera, Paleomagnetism of Upper Triassic rocks in the Los Colorados hill section, Mendoza province, Argentina, Journal of South American Earth Sciences, 18, 41–59, 2004.CrossRefGoogle Scholar
  50. Ward, D., R. Goldsmith, J. Cruz, and H. Restrepo, Geología de los Cuadrángulos H-12, Bucaramanga y H-13, Pamplona, Departamento de Santander, Boletín Geológico Ingeominas, 21(1–3), 132 p., 1973.Google Scholar
  51. Wawrzyniec, T., J. Geissman, E. Anderson, S. Harlan, and J. Faulds, Paleomagnetic data bearing on style deformation in the Lake Mead area, southern Nevada, Journal of Structural Geology, 23, 1255–1279, 2001.CrossRefGoogle Scholar
  52. Wilson, G. S. and A. P. Roberts, Diagenesis of magnetic mineral assemblages in multiply redeposited siliciclastic marine sediments, Wanganui Basin, New Zealand, in Paleomagnetism and Diagenesis in Sediments, edited by D. H. Tarling and P. Turner, Geological Society Special Publication, 51, 95–108, 1999.Google Scholar
  53. Zijderveld, J. D. A., A. C. demagnetization of rocks: analysis of results, in Methods of Paleomagnetism, edited by D. W Collison, K. M. Creer, and S. K. Runcorn, Elsevier Science, 254–286, 1967.Google Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2006

Authors and Affiliations

  • Germán Bayona
    • 1
  • Augusto Rapalini
    • 2
  • Vincenzo Costanzo-Alvarez
    • 3
  1. 1.Corporación Geológica AresBogotáColombia
  2. 2.Instituto de Geofísica Daniel Valencio (INGEODAV), Departamento de Ciencias Geológicas, FCE y NUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Departamento de Ciencias de la TierraUniversidad Simón BolívarCaracasVenezuela

Personalised recommendations