Advertisement

Earth, Planets and Space

, Volume 58, Issue 8, pp 1087–1092 | Cite as

Mantle wedge deformation by subducting and rotating slab and its possible implication

  • S. Honda
  • Y. Orihashi
  • K. Mibe
  • A. Motoki
  • H. Sumino
  • M. J. Haller
Open Access
Letter

Abstract

We have constructed a simple model of the deformation of the mantle wedge caused by the subducting and rotating slab based on corner flow model. By applying this model to the geological settings of the Somuncura plateau volcanic region, northern Patagonia, which is located far from the volcanic front, we constrain the mechanical aspect of the hypothesis that the volcanisms of the Somuncura region are triggered by the dehydration-induced melting of the up-warped transition zone which may contain more water than other regions do. Assuming that the water concentrates in the transition zone under the Somuncura plateau, we find that the above scenario may be possible, if the speed of the subducting slab is less than ∼2 cm/yr or the dip angle changes significantly (∼50 degrees within ∼8 Myr).

Key words

Mantle wedge rotating slab volcanism Somuncura transition zone water 

References

  1. Batchelor, G. K., An Introduction to Fluid Dynamics, Cambridge Univ. Press, England, 655 pp., 1967.Google Scholar
  2. Bercovici, D. and S. Karato, Whole-mantle convection and the transition-zone water filter, Nature, 425, 39–44, 2003.CrossRefGoogle Scholar
  3. Bohm, M., S. Luth, H. Echtler, G. Asch, K. Bataille, C. Bruhn, A. Rietbrock, and P. Wigger, The Southern Andes between 36° and 40°S latitude: seismicity and average seismic velocities, Tectonophys., 356, 275–289, 2002.CrossRefGoogle Scholar
  4. Cande, S. C. and R. B. Leslie, Late Cenozoic tectonics of the Southern Chile trench, J. Geophys. Res., 91, 471–496, 1986.CrossRefGoogle Scholar
  5. de Ignacio, C., I. Lopez, R. Oyarzun, and A. Marquez, The northern Patagonia Somuncura plateau basalts: a product of slab-induced, shallow asthenospheric upwelling?, Terra Nova, 13, 117–121, 2001.CrossRefGoogle Scholar
  6. Furukawa, Y., Magmatic processes under arcs and formation of the volcanic front, J. Geophys. Res., 98, 8309–8319, 1993.CrossRefGoogle Scholar
  7. Inoue, T., Effect of water on melting phase relations and melt composition in the system Mg2SiO4-MgSiO3-H2O up to 15 GPa, Phys. Earth Planet. Inter., 85, 237–263, 1994.CrossRefGoogle Scholar
  8. Iwamori, H., Degree of melting and source composition of Cenozoic basalts in southwest Japan: evidence for mantle upwelling by flux melting, J. Geophys. Res., 97, 10983–10995, 1992.CrossRefGoogle Scholar
  9. Kay, S. M., A. Ardolino, M. Franchi, and V. A. Ramos, El origen de la meseta de Somuncura: Distribucion y geoquimica de sus rocas volcanicas maficas, Proceedings 12th Congreso Geologico Argentino, 4, 236–248, 1993.Google Scholar
  10. Komabayashi, T. Omori, S. and S. Maruyama, Petrogenetic grid in the system MgO-SiO2-H2O up to 30 GPa, 1600°C: Applications to hydrous peridotite subducting into the Earth’s deep interior, J. Geophys. Res., 109, B03206, doi:10.1029/2003JB002651, 2004.Google Scholar
  11. Matsukage, K., J. Zhicheng, and S. Karato, Density of hydrous silicate melt at the conditions of Earth’s deep mantle, Nature, 438, 488–491, 2005.CrossRefGoogle Scholar
  12. McKenzie, D. P., Speculations on the consequences and causes of plate motions, Geophys. J. R. Astr. Soc., 18, 1–32, 1968.CrossRefGoogle Scholar
  13. Miyashiro, A., Hot regions and the origin of marginal basins in the western Pacific, Tectonophys., 122, 195–216, 1986.CrossRefGoogle Scholar
  14. Morgan, W. J., Convection plumes in the lower mantle, Nature, 230, 42–43, 1971.CrossRefGoogle Scholar
  15. Muñoz, J., R. Troncoso, P. Duhart, P. Crignola, L. Farmer, and C. R. Stern, The relation of the mid-Tertiary coastal magmatic belt in south-central Chile to the late Oligocene increase in plate convergence rate, Revista Geologica de Chile, 27, 177–204, 2000.Google Scholar
  16. Ohtani, E. and M. Maeda, Density of basaltic melt at high pressure and stability of melt at the base of the lower mantle, Earth. Planet. Sci. Lett., 193, 69–75, 2001.CrossRefGoogle Scholar
  17. Orihashi, Y., A. Motoki, M. J. Haller, H. Sumino, H. Iwamori, F. D. Cario, D. Hirata, R. Anma, and K. Nagao, New geochronological and geochemical constrains for extra back-arc volcanism in Somuncura region, northern Patagonia, Abstracts IAVCEI, General Assembly 2004, S07C, 12, 2004.Google Scholar
  18. Orihashi, Y., A. Motoki, M. J. Haller, and CHRISTMASSY Project Volcanic Group, Petrogenesis of relatively large-volume basalts on extraback arc province: Somuncura plateau, north Patagonia, Earth Monthly, 27, 438–447, 2005 (in Japanese).Google Scholar
  19. Rapela, C. W., L. A. Spalletti, J. C. Merodio, and E. Aragon, Temporal evolution and spatial variation of early Tertiary volcanism in the Patag-onian Andes, J. South American Earth Sciences, 1, 75–88, 1988.CrossRefGoogle Scholar
  20. Richard, G., M. Monnereau, and J. Ingrin, Is the transition zone an empty water reservoir? Inferences from numerical model of mantle dynamics, Earth Planet. Sci. Lett., 205, 37–51, 2002.CrossRefGoogle Scholar
  21. Sakamaki, T., A. Suzuki, and E. Ohtani, Stability of hydrous melt at the base of the Earth’s upper mantle, Nature, 439, 192–194, 2006.CrossRefGoogle Scholar
  22. Smyth, J. R. and T. Kawamoto, Wadsleyite II: A new high pressure hydrous phase in the peridotite-H2O system, Earth Planet. Sci. Lett., 146, E9–E16, 1997.CrossRefGoogle Scholar
  23. Stern, C. R., F. A. Frey, K. Futa, R. E. Zartman, Z. C. Peng, and T. K. Kyser, Tarce-element and Sr, Nd, Pb and O isotopic composition of Pliocene to Quaternary alkali basalts of the Patagonian plateau lavas of southernmost of South-America, Contrib. Mineral. Petrol., 104, 294–308, 1990.CrossRefGoogle Scholar
  24. Storey, B. C., The role of mantle plumes in continental breakup: case histories from Gondwanaland, Nature, 377, 301–308, 1995.CrossRefGoogle Scholar
  25. Tebbens, S. F. and S. C. Cande, Southeastern Pacific tectonic evolution from early Oligocene to present, J. Geophys. Res., 102, 12061–12084, 1997.CrossRefGoogle Scholar
  26. Zhao, D., L. Jianshe, and T. Rongyu, Origin of the Changbai intraplate volcanism in Northeast China: Evidence from seismic tomography, Chin. Sci. Bull., 13, 1401–1408, 2004.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2006

Authors and Affiliations

  • S. Honda
    • 1
  • Y. Orihashi
    • 1
  • K. Mibe
    • 1
  • A. Motoki
    • 2
  • H. Sumino
    • 3
  • M. J. Haller
    • 4
  1. 1.Earthquake Research InstituteUniversity of TokyoTokyoJapan
  2. 2.Depertamento de Mineralogia e Petrologia IgneaUniversidade do Estado do Rio deRio de JaneiroBrazil
  3. 3.Laboratory for Earthquake Chemistry, Graduate School of ScienceUniversity of TokyoTokyoJapan
  4. 4.Universidad Nacional de La Patagonia San Juan BoscoPuerto MadrynArgentina

Personalised recommendations