Earth, Planets and Space

, Volume 56, Issue 7, pp 681–686 | Cite as

Evidence for pearl-like magnetic island structures at dawn and dusk side magnetopause

  • W. -L. Teh
  • L. -N. Hau
Open Access


Two-dimensional magnetopause structure with a series of pearl-like magnetic islands at the dawn side of the equatorial plane was reported earlier by Hau and Sonnerup (1999) from the AMPTE/IRM data by solving the Grad-Shafranov equation as a spatial initial value problem. This paper presents another rare event that appears like the image of the dawn event at the dusk side magnetopause based on the analysis of two years satellite data and similar reconstruction method. The two crossings occur at (x, y, z) = (7.13,−6.64, 0.4) and (7.93, 9.06,−1.89)R E with magnetopause normal n̂ being (0.85,−0.52, 0.003) and (0.82, 0.55,−0.17) in the GSE coordinates, respectively. Both events are tangential discontinuity-like structures with shear angles being 124° and 97° and convect tailward with the deHoffmann-Teller frame velocity VHT of (−141.88,−215.47,72.48) and (−100.26, 144.52,20.90) (km/s), respectively, that form approximately 90° from n̂. The magnetic field configurations in both cases show great similarity with the same island width of ∼500 km and aspect ratio of ∼0.2.

Key words

Magnetopause current layer reconnection tearing-mode instability 


  1. Greenly, J. B. and B. U. Ö. Sonnerup, Tearing modes at the magnetopause, J. Geophys. Res., 86, 1305, 1981.CrossRefGoogle Scholar
  2. Hau, L.-N. and S.-W. Chiou, On the linear and nonlinear resistive tearing mode instability, J. Geophys. Res., 106, 8371, 2001.CrossRefGoogle Scholar
  3. Hau, L.-N. and B. U. Ö. Sonnerup, Two-dimensional coherent structures in the magnetopause: Recovery of static equilibria from single-spacecraft data, J. Geophys. Res., 104, 6899, 1999.CrossRefGoogle Scholar
  4. Hu, Q. and B. U. Ö. Sonnerup, Magnetopause transects from two spacecraft: A comparison, Geophys. Res. Lett., 27, 1443, 2000.CrossRefGoogle Scholar
  5. Hu, Q. and B. U. Ö. Sonnerup, Reconstruction of two-dimensional structures in the magnetopause: Method improvements, J. Geophys. Res., 108, 1011, 2003.CrossRefGoogle Scholar
  6. Kawano, H. and T. Higuchi, The bootstrap method in space physics: Error estimation for the minimum variance analysis, Geophys. Res. Lett., 22, 307, 1995.CrossRefGoogle Scholar
  7. Khrabrov, A. V. and B. U. Ö. Sonnerup, Orientation and motion of current layers: Minimization of the Faraday residue, Geophys. Res. Lett., 25, 2373, 1998.CrossRefGoogle Scholar
  8. Khrabrov, A. V. and B. U. Ö. Sonnerup, Error estimates for minimum variance analysis, J. Geophys. Res., 103, 6641, 1998a.CrossRefGoogle Scholar
  9. Mozer, F. S., S. D. Bale, and T.-D. Phan, Evidence of diffusion regions at a subsolar magnetopause crossing, Phys. Rev. Lett., 89, 015002, 2002.CrossRefGoogle Scholar
  10. Phan, T.-D., L. M. Kistler, B. Klecker, G. Haerendel, G. Paschmann, B. U. Ö. Sonnerup, W. Baumjohann, M. B. Bavassano-Cattanneo, C. W. Carlson, A. M. Dilellis, K.-H. Fornacon, L. A. Frank, M. Fujimoto, E. Georgescu, S. Kokubun, E. Moeblus, T. Mukai, M. Øieroset, W. R. Paterson, and H. Reme, Extended magnetic reconnection at the Earth’s magnetopause from detection of bi-directional jets, Nature, 404, 848–850, 2000.CrossRefGoogle Scholar
  11. Phan, T.-D., B. U. Ö. Sonnerup, and R. P Lin, Fluid and kinetic signatures of reconnection at the dawn tail magnetopause: Wind observations, J. Geophys. Res., 106, 25, 489, 2001.Google Scholar
  12. Shue, J.-H., J. K. Chao, H. C. Fu, C. T. Russell, P. Song, K. K. Khurana, and H. J. Singer, A new functional form to study the solar wind control of the magnetopause size and shape, J. Geophys. Res., 102, 9497, 1997.CrossRefGoogle Scholar
  13. Sonnerup, B. U. Ö. and M. Guo, Magnetopause transects, Geophys. Res. Lett., 23, 3679, 1996.CrossRefGoogle Scholar
  14. Sonnerup, B. U. Ö. and M. Scheible, Minimum and maximum variance analysis, in Analysis Methods for Multi-Spacecraft Data, edited by G. Paschmann and P. W. Daly, chap. 8, pp. 185–220, Int. Space Sci. Inst., Bern, Switzerland, and Eur. Space Agency, Paris, France, 1998.Google Scholar
  15. Sonnerup, B. U. Ö., I. Papamastorakis, G. Paschmann, and H. Lühr., The magnetopause for large magnetic shear: Analysis of convection electric fields from AMPTE/IRM, J. Geophys. Res., 95, 10, 541, 1990.Google Scholar
  16. Terasawa, T., H. Kawano, I. Shinohara, T. Mukai, Y. Saito, M. Hoshino, A. Nishida, S. Machida, T. Nagai, T. Yamamoto, and S. Kokubun, On the determination of a moving MHD structure: Minimization of the residue of integrated Faraday’s equation, J. Geomagn. Geoelectr., 48, 603, 1996.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2004

Authors and Affiliations

  1. 1.Institute of Space ScienceNational Central UniversityJhongliTaiwan, R.O.C.

Personalised recommendations