Earth, Planets and Space

, Volume 56, Issue 6, pp 613–620 | Cite as

Orbital variation of the rotating non-spherical dust grains due to change of the solar radiation forces by shape effect

  • Md. Abu Saklayen
  • Tadashi Mukai
Open Access


We present the values of a ratio β of the solar radiation pressure force to the solar gravity on the finite circular cylindrical grains, as functions of an aspect ratio of the cylinder and an incident angle Θ of the solar radiation. By using the resulting formula of β(Θ), the trajectory of the Kepler orbit for the rotating silicate cylinder is computed associated with a spin motion under the assumption that the spin axis is along the shortest axis of the cylinder and points to the direction perpendicular to the solar radiation. We found for the silicate cylinder grain with a mass equivalent to a sphere with a radius of 0.15 μm, and the aspect ratio of 2.0 that a heliocentric distance of the grain varies periodically with a time, having an amplitude of the fluctuation in the heliocentric distance of about 0.02 AU, where the spin velocity is 0.25 rotation/day and the initial orbit has a semi-major axis 3.0 AU and an eccentricity 0. In addition, during such a fluctuation of the heliocentric distance, the instantaneous eccentricity of the orbit also varies simultaneously from 0 to 1.6 with the rotation of the grain. This implies that the in-situ measurements of orbital elements of impact grains on the dust detector may record those instantaneous orbital elements related to the phase of the grain’s rotation.

Key words

Interplanetary dust irregularly shape solar radiation forces spin motion dynamics orbital evolution 


  1. Asano, S. and G. Yamamoto, Light scattering by a spheroidal particle, Appl. Optics, 14, 29–49, 1975.CrossRefGoogle Scholar
  2. Asano, S. and G. Yamamoto, Light scattering by a spheroidal particle: ettratum, Appl. Optics, 15, 2028, 1976.CrossRefGoogle Scholar
  3. Burns, J. A., P. L. Lamy, and S. Soter, Radiation forces on small particles in the solar system, Icarus, 40, 1–48, 1979.CrossRefGoogle Scholar
  4. Davis, L. Jr. and J. L. Greenstein, The polarization of starlight by aligned dust grains Astrophys. J., 114, 206–215, 1951.CrossRefGoogle Scholar
  5. Dohnanyi, J. S., Particle Dynamics, in Comet Dust, edited by J. A. M. MacDonnell, pp. 527–587, Wiley, New York, 1978.Google Scholar
  6. Draine, B. T. and P. J. Flatau, Discrete dipole approximation for scattering calculation, J. Opt. Soc.Am.A,, 11, 1491–1499, 1994.CrossRefGoogle Scholar
  7. Draine, B. T. and P. J. Flatau, User Guide for the Discrete Dipole Approximation Code DDSCAT,, 1–41, 2000.Google Scholar
  8. Everhart, E., An Efficient Integrator that Uses Gauss=Radau Spacing, Dynamics of Comets: Their Origin and Evolution, Proc. of IAU Colloqu. 183, edited by A. Carusi and Gi. B. Valsecchi, pp. 185–192, Dordrecht: Reidel, Astrophysics and Space Science Library, 115, 1985.Google Scholar
  9. Fujiwara, A. and A. Tsukamoto, Experimental study on the velocity of fragments in collisional breakup, Icarus, 44, 142–153, 1981.CrossRefGoogle Scholar
  10. Gold, T., Polarization of star light, Nature, 169, 322–324, 1952.CrossRefGoogle Scholar
  11. Greenberg, J. M., Interstellar Grains, in Nebulae and Interstellar Matter, edited by B. M. Middlehurst and L. H. Aller, pp. 221–364, The University of Chicago Press, Chicago & London, 1968.Google Scholar
  12. Gustafson, B. A. S., Comet ejection and dynamics of nonspherical dust particles and meteoroids, Astrophys. J., 337, 945–949, 1989.CrossRefGoogle Scholar
  13. Il’in, V. B. and N. V. Voshchinnikov, Radiation pressure on nonspherical dust grains in envelopes of late-type giants, Astron. Astrophys. Suppl. Ser, 128, 187–196, 1998.CrossRefGoogle Scholar
  14. Ishiguro, M., R. Nakamura, Y. Fujii, K. Morishige, H. Yano, H. Yasuda, S. Yokogawa, and T. Mukai, First detection of visible zodiacal dust bands from ground based observations, Astrophys. J., 511, 432–435, 1998.CrossRefGoogle Scholar
  15. Kimura, H., H. Okamoto, and T. Mukai, Radiation pressure and Poynting-Robertson effect for fluffy dust particles, Icarus, 157, 349–361, 2002.CrossRefGoogle Scholar
  16. Low, F. J., D. A. Beintema, T. N. Gautier, F. C. Gillett, C. A. Beichman, G. Neugebauer, E. Young, H. H. Aumann, N. Boggess, J. P. Emerson, H. J. Habing, M. G. Hauser, J. R. Houck, M. Rowan-Robinson, B. T. Soifer, R. G. Walker, and P. R. Wesselius, Infrared cirrus: New component of the infrared mission, Astrophys. J., 278, L19–L22, 1CrossRefGoogle Scholar
  17. Mukai, T., Spin-down Effect on an Interplanetary Dust Grain, Proc. of ISAS Lunar & Planetary Symp., 14, 169–174, 1981.Google Scholar
  18. Mukai, T., Cometary dust and interplanetary particles, in Evolution of Interstellar Dust and Related Topics, edited by A. Benti, J. M. Greenberg, and S. Aiello, pp. 397–445, Elsevier Sci. Publ. Amsterdam, 1989.Google Scholar
  19. Mukai, T., H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, Radiation pressure forces of fluffy porous grains, Astron. Astrophys., 262, 315–320, 1992.Google Scholar
  20. Paddack, S. J. and J. W Rhee, Rotational bursting of interplanetary dust particles, in Interplanetary Dust and Zodiacal Light, edited by H. Elsaesser and H. Fechtig, pp. 453–457, Lecture Notes in Physics 48, Springer-Verlag, Berlin-Heidelberg-New York, 1976.CrossRefGoogle Scholar
  21. Purcell, E. M. and C. R. Pennypacker, Scattering and absorption of light by nonspherical dielectric grains, Astrophys. J., 186, 705–714, 1973.CrossRefGoogle Scholar
  22. Reach, W. T., B. A. Franz, and J. L. Weiland, The three-dimensional structure of the zodiacal dust bands, Icarus, 127, 461–484, 1997.CrossRefGoogle Scholar
  23. Spiesman, J. W., G. M. Hauser, T. Kelsall, M. C. Lisse, H. S. Moseley, T. W. Reach, F. R. Sillverberg, W. S. Stemwedel, and L. J. Weiland, Near- and far-infrared observation of interplanetary dust bands from the COBE diffuse infrared background experiment, Astrophys. J., 442, 662–667, 1995.CrossRefGoogle Scholar
  24. Voshchinnikov, N. V. and V. B. Il’in, Radiation pressure on cylindrical particles, Opt. Spectrosc., 55, 304–306, 1983.Google Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2004

Authors and Affiliations

  1. 1.Garduate School of Science and TechnologyKobe UniversityKobeJapan

Personalised recommendations