Earth, Planets and Space

, Volume 56, Issue 5, pp e13–e16 | Cite as

Nonlinear variability of SYM-H over two solar cycles

Open Access
E-Letter

Abstract

Fractal fluctuation analysis is applied to ground-based SYM-H data during quiet times and during magnetic storm times spanning two solar cycles between 1981–2002. On the basis of Kp, intervals were selected that corresponded to quiet and active magnetospheric dynamics. A nonlinear detrended fluctuation analysis (DFA) was applied to monitor nonlinear variability over the solar cycles. We find significant variations in nonlinear statistics between quiet and active intervals, which indicates a difference in statistical variability for quiet times, and storm times.

Key words

SYM-H fractals nonlinear space weather indices geomagnetism Dst prediction 

References

  1. Blok, H. J., On the nature of the stock market: Simulations and experiments, PhD thesis, University of British Columbia, Canada, 2000.Google Scholar
  2. Cannon, M. J., D. B. Percival, D. C. Caccia, G. M. Raymond, and J. B. Bassingthwaighte, the Evaluating scaled windowed variance methods for estimating the Hurst coefficient of time series, Physica A, 241, 606–626, 1997.CrossRefGoogle Scholar
  3. Chen, Z., P. Ch. Ivanov, K. Hu, and H. E. Stanley, Effect of nonstationarities on detrended fluctuation analysis, Phys. Rev. E, 65, 041107, 2002.CrossRefGoogle Scholar
  4. Gonzalez, W. D., J. A. Joselyn, Y. Kamide, H. W. Kroehl, G. Rostoker, B. T. Tsurutani, and V. N. Vasyliunas, What is a geomagnetic storm?, J. Geophys. Res., 99, 5771–5792, 1994.CrossRefGoogle Scholar
  5. Higuchi, T., Approach to an irregular time series on the basis of the fractal theory, Physica D, 31, 277–283, 1988.CrossRefGoogle Scholar
  6. Hu, K., P. Ch. Ivanov, Z. Chen, P. Carpena, and H. E. Stanley, Effect of trends on detrended fluctuation analysis, Phys. Rev. E, 64, 011114, 2001.CrossRefGoogle Scholar
  7. Iyemori, T., T. Araki, T. Kamei, and M. Takeda, Mid-latitude Geomagnetic Indices “ASY” and “SYM” for 1999 (Provisional), online at http://swdcwww.kugi.kyoto-u.ac.jp/aeasy/asy.pdf, 1999.Google Scholar
  8. Kantelhardt, J. W., S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley, Multifractal detrended fluctuation analysis of nonstationary time series, Physica A, 316, 87–114, 2002.CrossRefGoogle Scholar
  9. Ohtani, S., T. Higuchi, A. T. Y. Lui, and K. Takahashi, Magnetic fluctuations associated with tail current disruption: Fractal analysis, J. Geophys. Res., 100, 19135–19145, 1995.CrossRefGoogle Scholar
  10. Ohtani, S., K. Takahashi, T. Higuchi, A. T. Y. Lui, H. E. Spence, and J. F. Fennell, AMPTE/CCE-SCATHA simultaneous observations of substorm-associated magnetic fluctuations, J. Geophys. Res., 103(A3), 4671–4682, 1998.CrossRefGoogle Scholar
  11. Peng, C.-K., S. Havlin, H. E. Stanley, A. L. Goldberger, Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat timeseries, Chaos, 5(1), 82–87, 1995.CrossRefGoogle Scholar
  12. Price, C. P. and D. E. Newman, Using the R/S statistic to analyze AE data, J. Atmos. Solar-Terr. Phys., 63, 1387–1397, 2001.CrossRefGoogle Scholar
  13. Rangarajan, G. K. and T. Iyemori, Time variations of geomagnetic activity indices Kp and Ap: an update, Ann. Geophysicae, 15, 1271–1290, 1997.CrossRefGoogle Scholar
  14. Sharma, A. S., Assessing the magnetosphere’s nonlinear behaviour: Its dimension is low, its predictability is high, Rev. Geophys., 35, 645, 1995.CrossRefGoogle Scholar
  15. Takalo, J., J. Timonen, A. Klimas, J. Valdivia, and D. Vassiliadis, Nonlinear energy dissipation in a cellular automaton magnetotail field model, Geophys. Res. Lett., 26, 1813–1816, 1999.CrossRefGoogle Scholar
  16. Taqqu, M. S., V. Teverovsky, and W. Willinger, Estimators for long-range dependence: An empirical study, Fractals, 3, 185, 1996.Google Scholar
  17. Wanliss, J. A. and M. A. Reynolds, Measurement of the stochasticity of low-latitude geomagnetic temporal variations, Ann. Geophys., 21, 1–6, 2003.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2004

Authors and Affiliations

  1. 1.Department of Physical SciencesEmbry-Riddle Aeronautical UniversityDaytona BeachUSA

Personalised recommendations