Earth, Planets and Space

, Volume 55, Issue 10, pp 601–612 | Cite as

Local time dependence of the frequency of Pi2 waves simultaneously observed at 5 low-latitude stations

  • Desheng Han
  • Toshihiko Iyemori
  • Yufen Gao
  • Yasuharu Sano
  • Fuxi Yang
  • Wansheng Li
  • Masahito Nosé
Open Access


One-second resolution geomagnetic data from 5 stations located at low-latitudes (i.e., L = 1.2 ~ 1.6) were used to examine the local time dependence of the dominant frequency of Pi2 pulsations. We analyzed 183 Pi2 events simultaneously recorded at the 5 stations and discussed their possible generation mechanisms. The averaged dominant frequency of the H (horizontal) component is higher on the dawn side than that on the dusk side and shows a peak value in the post-midnight at around 03 LT, which confirms the LT dependence previously suggested from single station data (i.e., non-simultaneous observation). However, some of the events have no LT dependence. For the events which show the LT dependence at low-latitudes, we infer that the cavity resonance mode is a plausible generation mechanism, but we do not rule out the possibility of the plasmaspheric surface wave mode which has also been suggested. For the events having a common frequency between the eastern and western stations, we suggest the cavity resonance mode to be the mechanism. The averaged dominant frequency of the D component does not show any clear LT dependence, and only about 20% of Pi2s have identical frequency for both the H and D components, therefore we suggest that the H and D oscillations of Pi2s are generated from different mechanisms. We also found that the frequency of different parts of a Pi2 pulsation, i.e., the dominant frequency for leading part and trailing part of the pulsation, is different, and the frequency of the trailing part is lower than that of the leading part.

Key words

Pi2 frequency LT dependence low-latitude simultaneous observation 


  1. Allan, W., E. M. Poulter, and S. P. White, Hydromagnetic wave coupling in the magnetosphere—plasmapause effects on impulse-excited resonances, Planet. Space Sci., 34, 1189–1200, 1986.CrossRefGoogle Scholar
  2. Carpenter, D. L., Whistler studies of the plasmapause in the magnetosphere, 1, Temporal variations in the position of the knee and some evidence on the plasma motions on near knee, J. Geophys. Res., 71, 693–709, 1966.CrossRefGoogle Scholar
  3. Chen, L. and A. Hasegawa, A theory of long-period magnetic pulsations, 2. Impulse excitation of surface eigen-mode, J. Geophys. Res., 79, 1033, 1974b.CrossRefGoogle Scholar
  4. Cheng, C.-C, J.-K. Chao, and K. Yumoto, Spectral power of low-latitude Pi2 pulsations at the 210° magnetic meridian stations and plasmaspheric cavity resonances, Earth Planets Space, 52, 615–627, 2000.CrossRefGoogle Scholar
  5. Dento, R. E., D.H. Lee, K. Takahashi, J. Goldstein, and R. Anderson, Quantitative test of the cavity resonance explanation of plasmaspheric PI2 frequencies, J. Geophys. Res., 107(A7), 10.1029/2001JA000272, 2002.Google Scholar
  6. Fujita, S. and M. Itonaga, A plasmaspheric virtual resonance in a longitudinally non-uniform plasmasphere, Earth Planets Space, 55, 219–222, 2003.CrossRefGoogle Scholar
  7. Fujita, S., H. Nakata, M. Itonaga, A. Yoshikawa, and T. Mizuta, A numerical simulation of the Pi2 pulsations associated with the substorm current wedge, J. Geophys. Res., 107, 10.1029/2001JA900137, 2002.Google Scholar
  8. Gallagher, D. L., P. D. Craven, and R. H. Comfort, Global core plasma model, J. Geophys. Res., 105, 10819–10833, 2000.Google Scholar
  9. Keiling, A., J. R. Wygant, C. Cattel, K.-H. Kim, C. T. Russell, D. K. Milling, M. Temerin, F. S. Mozer, and C. A. Kletzing, Pi2 pulsations observed with the Polar satellite and ground stations: Coupling of trapped and propagating fast mode waves to a midlatitude field line resonance, J. Geophys. Res, 106, 25891–25904, 2001.CrossRefGoogle Scholar
  10. Kosaka, K., T. Iyemori, M. Nosé, M. Bitterly, and J. Bitterly, Local time dependence of the dominant frequency of Pi2 pulsations at mid- and low-latitudes. Earth Planets Space, 54, 771–781, 2002.CrossRefGoogle Scholar
  11. Lanzerotti, L. J. and L. Medford, Local night, impulsive (Pi2 type) dydro-magnetic wave polarization at low latitudes, Planet. Space Sci., 32, 135, 1984.CrossRefGoogle Scholar
  12. Lee, D.H., Dynamics of MHD wave propagation in the low-latitude magnetosphere, J. Geophys. Res., 101, 15371–15386, 1996.CrossRefGoogle Scholar
  13. Lee, D.H. and R. Lysak, MHD waves in a three-dimensional dipolar magnetic field: a search for Pi2 pulsations, J. Geophys. Res., 104, 28691–28699, 1999.CrossRefGoogle Scholar
  14. Lester, M. and D. Orr, Correlations between ground observations of Pi2 geomagnetic pulsations and satellite plasma density observations, Planet. Space Sci., 31, 143, 1989.CrossRefGoogle Scholar
  15. Lester, M., W. J. Hughes, and H. J. Singer, Polarization patterns of Pi2 magnetic pulsations and the substorm current wedge, J. Geophys. Res., 88, 7958–7966, 1983.CrossRefGoogle Scholar
  16. Lester, M., W. J. Hughes, and H. J. Singer, Longitudinal structure in Pi2 pulsation and the substorm current wedge, J. Geophys. Res., 89, 5489–5494, 1984.CrossRefGoogle Scholar
  17. Nosé, M., T. Iyemori, M. Takeda, T. Kamei, D. K. Milling, D. Orr, H. J. Singer, E. W. Worthington, and N. Sumitomo, Automated detection of Pi2 pulsations using wavelet analysis: 1. Method and an application for substorm monitoring, Earth Planets Space, 50, 773–783, 1998.CrossRefGoogle Scholar
  18. Nosé, M., K. Takahashi, T. Uozumi, K. Yumoto, Y. Miyoshi, A. Morioka, D. K. Milling, P. R. Sutcliffe, H. Matsumoto, T. Goka, and H. Nakata, Multipoint observations of a Pi2 pulsation on morning side: The 20 September 1995 event, J. Geophys. Res., 108(A5), 1219, doi: 10.1029/2002Ja009747, 2003.CrossRefGoogle Scholar
  19. Olson, J. V., Pi2 pulsations and substorm onsets: A review, J. Geophys. Res., 104, 17499–17520, 1999.CrossRefGoogle Scholar
  20. Sutcliffe, P. R., The association of harmonics in Pi2 power spectra with the plasmapause, Planet. Space Sci., 23, 1581–1587, 1975.CrossRefGoogle Scholar
  21. Sutcliffe, P. R. and K. Yumoto, Dayside Pi2 pulsations at low latitudes, Geophys. Res. Lett., 16, 887–890, 1989.CrossRefGoogle Scholar
  22. Sutcliffe, P. R. and K. Yumoto, On the cavity mode nature of low latitude Pi2 pulsations, J. Geophys. Res., 96, 1543–1551, 1991.CrossRefGoogle Scholar
  23. Takahashi, K., S.-i. Ohtani, and B. J. Anderson, Statistical analysis of Pi 2 pulsations observed by the AMPTE CCE spacecraft in the inner magnetosphere, J. Geophys. Res., 100, 21929–21941, 1995.CrossRefGoogle Scholar
  24. Takahashi, K., D.H. Lee, M. Nose, R. R. Anderson, W. J. Hughes, CRRES electric field study of the radial mode structure of Pi2 pulsations, J. Geophys. Res., 108(A5), 1210, doi:10.1029/2002JA009761, 2003.CrossRefGoogle Scholar
  25. Ulrych, T. J. and T. N. Bishop, Maximum entropy spectral analysis and autoregressive decomposition, Reviews of Geophysics and Space Physics, 13, 183–200, 1975.CrossRefGoogle Scholar
  26. Yeoman, T. K. and D. Orr, Phase and spectral power of mid-latitude Pi2 pulsations: Evidence for a plasmaspheric cavity resonance, Planet. Space Sci, 37, 1367–1383, 1989.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2003

Authors and Affiliations

  • Desheng Han
    • 1
  • Toshihiko Iyemori
    • 2
  • Yufen Gao
    • 3
  • Yasuharu Sano
    • 4
  • Fuxi Yang
    • 5
  • Wansheng Li
    • 6
  • Masahito Nosé
    • 2
  1. 1.Department of Geophysics, Graduate School of ScienceKyoto UniversityKyotoJapan
  2. 2.Data Analysis Center for Geomagnetism and Space Magnetism, Graduate School of ScienceKyoto UniversityKyotoJapan
  3. 3.Institute of GeophysicsCSBBeijingChina
  4. 4.Department of Information Management, School of Business AdministrationAsahi UniversityGifuJapan
  5. 5.Urumqi Basic Seismic Station UrumqiXinjiang Uygur Autonomous RegionChina
  6. 6.Yinchuan Geomagnetic ObservatoryYinchuan, Ninxia Hui Autonomous RegionChina

Personalised recommendations