Earth, Planets and Space

, Volume 54, Issue 12, pp e1237–e1246 | Cite as

VHF-electromagnetic evidence of the underlying pre-seismic critical stage

  • Panayiotis Kapiris
  • John Polygiannakis
  • Athanassios Peratzakis
  • Konstantinos Nomicos
  • Konstantinos Eftaxias
Open Access
Article

Abstract

Based on the study of pre-seismic very high frequency (VHF) and very low frequency (VLF) electromagnetic signals, we attempt to establish a set of necessary conditions referring to the underlying critical stage of the earthquake preparation process. This study combines concepts from spectral analysis associated with critical point hypothesis, results from laboratory experiments of rupture and seismological arguments. These conditions are fully satisfied in the case of the VLF-VHF pre-seismic signals associated with the Kozani-Grevena earthquake in Greece.

Keywords

Acoustic Emission Earthquake Prediction Very High Frequency Foreshock Activity Seismic Electric Signal 

References

  1. Asada, T., H. Baba, M. Kawazoe, and M. Suguira, An attempt to delineate very low frequency electromagnetic signals associated with earthquakes, Earth Planets Space, 53(1), 55–62, 2001.CrossRefGoogle Scholar
  2. Bernard, P., P. Pinettes, P. Hadjidimitriou, E. Scordilis, G. Veis, and P. Milas, From precursors to predictions: a few recent cases for Greece, Geophys. J. Int., 131, 467–477, 1997.CrossRefGoogle Scholar
  3. Biagi, P., Seismic effects on LF radiowaves, in Atmospheric and Ionospheric Electromagnetic Phenomena associated with Earthquakes, edited by M. Hayakawa, pp. 535–542, Terrapub, Tokyo, 1999.Google Scholar
  4. Boffetta, G., V. Carbone, P. Giuliani, P. Veltri, and A. Vulpiani, Power laws in solar flares: self-organized criticality or turbulence?, Phys. Rev. Lett., 83, 4662–4665, 1999.CrossRefGoogle Scholar
  5. Cannelli, G., R. Cantelli, and F. Cordero, Self-organized criticality of the fracture processes associated with hydrogen precipitation in niobium by acoustic emission, Phys. Rev. Lett., 70, 3923–3926, 1993.CrossRefGoogle Scholar
  6. Carrillo, L., L. Manosa, J. Ortin, A. Planes, and E. Vives, Experimental evidence for universality of acoustic emission avalance distributions during structrural transitions, Phys. Rev. Lett., 81, 1889–1892, 1998.CrossRefGoogle Scholar
  7. Contoyiannis, Y. and F. Diakonos, Criticality and intermittency in order parameter space, Phys. Lett. A, 268, 286–292, 2000.CrossRefGoogle Scholar
  8. Contoyiannis, Y., F. Diakonos, and A. Malakis, Intermittent dynamics of critical fluctuations, Phys. Rev. Lett., 89, 35701/1–35701/4, 2002a.CrossRefGoogle Scholar
  9. Contoyiannis, Y., F. Diakonos, P. Kapiris, A. Peratzakis, and K. Eftaxias, Fingerprints of intermittent and critical behaviour of pending earthquake in electromagnetic anomalies, EGS XXVII General assemply, NHO62, 2002b.Google Scholar
  10. Diodati, P., F. Marchesoni, and S. Piazza, Acoustic emission from volcanic rocks: an example of self-organized criticality, Phys. Rev. Lett., 67, 2239–2243, 1991.CrossRefGoogle Scholar
  11. Guo, Z., B. Liu, and Y. Wang, Mechanism of electromagnetic emissions associated with microscopic and macroscopic cracking in rocks, in Electromagnetic Phenomena Related to Earthquake Prediction, edited by M. Hayakawa and Y. Fujinawa, pp. 523–529, Terrapub, Tokyo, 1994.Google Scholar
  12. Eftaxias, K., J. Kopanas, N. Bogris, P. Kapiris, G. Antonopoulos, and P. Varotsos, Detection of electromagnetic earthquake precursory signals in Greece, Proc. Japan Acad., 76(B), 45–50, 2000.CrossRefGoogle Scholar
  13. Eftaxias, K., P. Kapiris, J. Polygiannakis, N. Bogris, J. Kopanas, G. Antonopoulos, A. Peratzakis, and V. Hadjicontis, Signatures of pending earthquake from electromagnetic anomalies, Geophys. Res. Lett., 28, 3321–3324, 2001.CrossRefGoogle Scholar
  14. Eftaxias, K., P. Kapiris, E. Dologlou, J. Kopanas, N. Bogris, G. Antonopoulos, A. Peratzakis, and V. Hadjicontis, EM anomalies before the Kozani earthquake: A study of their behaviour through laboratory experiments, Geophys. Res. Lett., 29(8), 2002a.Google Scholar
  15. Eftaxias, K., P. Kapiris, J. Polygiannakis, A. Peratzakis, J. Kopanas, G. Antonopoulos, and D. Rigas, Experience of short term earthquake precursors with VLF-VHF electromagnetic emissions, Natural Hazards and Earth System Sciences, 2002b (accepted).Google Scholar
  16. Enomoto, Y. and H. Hashimoto, Emission of charged particles from indentation fracture of rocks, Nature, 346, 641–643, 1990.CrossRefGoogle Scholar
  17. Enomoto, Y, T. Shimamoto, A. Tsutsumi, and H. Hashimoto, Transient electric signals prior to rock fracturing: Potential use as an immediate earthquake precursor, in Electromagnetic Phenomena Related to Earthquake Prediction, edited by M. Hayakawa and Y. Fujinawa, pp. 253–259, Terrapub, Tokyo, 1994.Google Scholar
  18. Fujinawa, Y, K. Takahashi, T. Matsumoto, and N. Kawakami, Experiments to locate sources of earthquake-related VLF electromagnetic signals, Proc. Japan Acad., 73(B), 33–38, 1997.CrossRefGoogle Scholar
  19. Garcimartin, A., A. Guarino, L. Bellon, and S. Ciliberto, Statistical properties of fracture precursors, Phys. Rev. Lett., 79, 3202–3205, 1997.CrossRefGoogle Scholar
  20. Gershenzon, N. and G. Bambakidis, Modeling of seismo-electromagnetic phenomena, Russian Journal of Earth Sciences, 3, 247–275, 2001.CrossRefGoogle Scholar
  21. Gokhberg, M., V. Morgunov, and O. Pokhotelov, Earthquake Prediction. Seismo-Electromagnetic Phenomena, pp. 193, Gordon and Breach Publishers, Amsterdam, 1995.Google Scholar
  22. Gershenzon, N. and G. Bambakidis, Modeling of seismo-electromagnetic Phenomena, Russian Journal of Earth Sciences, 3, 247–275, 2001.CrossRefGoogle Scholar
  23. Hadjicontis, V. and C. Mavromatou, Laboratory Investigation of the Electric Signals Preceding earthquakes, in A Critical Review of VAN, edited by Sir J. Lighthill, pp. 105–117, World Scientific Publishing Co., Singapore, 1996.CrossRefGoogle Scholar
  24. Hayakawa, M., (ed.), Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, pp. 996, Terrapub, Tokyo, 1999.Google Scholar
  25. Hayakawa, M. and Y Fujinawa, (eds), Electromagnetic Phenomena Related to Earthquake Prediction, pp. 677, Terrapub, Tokyo, 1994.Google Scholar
  26. Hayakawa, M., T. Ito, and N. Smirnova, Fractal analysis of ULF geomagnetic data associated with the Guam earthquake on August 8, 1993, Geophys. Res. Lett., 26, 2797–2800, 1999.CrossRefGoogle Scholar
  27. Hayakawa, M., T. Itoh, K. Hattori, and K. Yumoto, ULF electromagnetic precursors for an earthquake at Biak, Indonesia on February 17, 1996, Geophys. Res. Lett., 27, 1531–1534, 2000.CrossRefGoogle Scholar
  28. Kaiser, G., A Friendly Guide to Wavelets, pp. 300, Birkhauser, 1994.Google Scholar
  29. Kamogawa, M. and Y.-H. Ohtsuki, Plasmon model for origin of earthquake related electromagnetic wave noises, Proc. Japan Acad., 75(B), 186–189, 1999a.CrossRefGoogle Scholar
  30. Kamogawa, M. and Y.-H. Ohtsuki, Image-charge model for origin of electromagnetic wave noises in the earthquakes, in Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, edited by M. Hayakawa, pp. 401–404, Terrapub, Tokyo, 1999b.Google Scholar
  31. Kanamori, H., A seismologist’s view of VAN, in A Critical Review of VAN. Earthquake Prediction from Seismic Electric Signals, edited by Sir J. Lighthill, pp. 339–346, World Scientific Publishing Co., Singapore, 1996.CrossRefGoogle Scholar
  32. Kikuchi, M. and H. Kanamori, Inversion of complex body waves, III, Bull. Seism. Soc Am., 81, 2335–2350, 1990.Google Scholar
  33. Mavromatou-Hadjiconti, C, Laboratory Investigation of the Electric Signals Preceding the Fracture of Crystalline Materials, Ph.D. Thesis, University of Athens, 1995.Google Scholar
  34. Meyer, B., R. Armijo, D. Massonet, J. B. De Chabalier, C. Delacourt, J. C. Ruegg, J. Achache, and D. Papanastassiou, Results from combining tectonic observations and SAR interferometry for the 1995 Grevena earthquake: A summary, J. Geodynamics, 26, 255–259, 1998.CrossRefGoogle Scholar
  35. Molchanov, O., Fracturing as an underlying mechanism of seismo-electric signals, in Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, edited by M. Hayakawa and Y. Fujinawa, pp. 349–356, Terrapub, Tokyo, 1999.Google Scholar
  36. Nomikos, K. and F. Vallianatos, Electromagnetic variations associated with the seismicity of the frontal Hellenic arc, Geologica Carpathica, 49, 57–60, 1998.Google Scholar
  37. Ohnaka, M. and K. Mogi, Frequency characteristics of acoustic emission in rocks under uniaxial compression and its relation to the fracturing process to failure, J. Geophys. Res., 87, 3873–3884, 1982.CrossRefGoogle Scholar
  38. Petri, A., G. Paparo, A. Vespignani, A. Alippi, and M. Costantini, Experimental evidence for critical dynamics in microfracturing processes, Phys. Rev. Lett., 73, 3423–3426, 1994.CrossRefGoogle Scholar
  39. Pickering, G., J. Bull, and D. Sanderson, Sampling power-law distribution, Tectonophys., 248, 1–20, 1995.CrossRefGoogle Scholar
  40. Qian, S., J. Yian, H. Cao, S. Shi, Z. Lu, J. Li, and K. Ren, Results of observations on seismo-electromagnetic waves at two earthquake experimental areas in China, in Electromagnetic Phenomena Related to Earthquake Prediction, edited by M. Hayakawa and Y. Fujinawa, pp. 205–211, Terrapub, Tokyo, 1994.Google Scholar
  41. Schuster, H., Deterministic Chaos, VCH Publishers, pp. 270, 1989.Google Scholar
  42. Sornette, D., (ed.), Critical Phenomena in Natural Sciences, pp. 434, Springer, 2000.Google Scholar
  43. Tanaka, H., M. Kamogawa, and Y. Ohtsuki, The interactions between bulk plasmons and electromagnetic waves assisted by surface roughness, Proc. Japan Acad., 75, 190–194, 1999.CrossRefGoogle Scholar
  44. Telesca, L., V. Cuomo, and V. Lapenna, A new approach to investigate the correlation between geoelectrical time fluctuations and earthquakes in a seismic area of southern Italy, Geophys. Res. Lett., 28(23), 4375–4378, 2001.CrossRefGoogle Scholar
  45. Turcotte, D., (ed.), Fractals and chaos in geology and geophysics, pp. 996, Cambridge University Press, 1993.Google Scholar
  46. Uyeda, S., Introduction to the VAN method of earthquake prediction, in A Critical Review of VAN-Earthquake Prediction from Seismic Electric Signals, edited by Sir James Lighthill, pp. 3–28, World Scientific Publishing Co., Singapore, 1996.CrossRefGoogle Scholar
  47. Vallianatos, F. and K. Nomikos, Seismogenic radioemissions as earthquake precursors in Greece, Phys. Chem. Earth, 23, 953–957, 1998.CrossRefGoogle Scholar
  48. Varotsos, P., M. Lazaridou, K. Eftaxias, G. Antonopoulos, J. Makris, and J. Kopanas, Short-term Earthquake Prediction in Greece by Seismic Electric Signals, in A Critical Review of VAN: Earthquake Prediction from Seismic Electric Signals, edited by Sir J. Lighthill, pp. 29–76, World Scientific Publishing Co., Singapore, 1996.CrossRefGoogle Scholar
  49. Warwick, J., C. Stoker, and T. Meyer, Radio emissions associated with rock fracture: Possible application to the great Chilean earthquake of May 22, 1960, J. Geophys. Res., 87(B4), 2851–2859, 1982.CrossRefGoogle Scholar
  50. Weiss, J., Fracture and fragmentation of ice: a fractal analysis of scale invariance, Engineering Fracture Mechanics, 68, 1975–2012, 2001.CrossRefGoogle Scholar
  51. Yoshino, T. and H. Sato, The study of exciting process of seismogenic emissions at epicentre by magnetic flux based on the statistical analysis, in Electromagnetic Phenomena Related to Earthquake Prediction, edited by M. Hayakawa and Y. Fujinawa, pp. 631–640, Terrapub, Tokyo, 1994.Google Scholar
  52. Zapperi, S., A. Vespignani, and H. Stanley, Plasticity and avalanche behaviour in microfracturing phenomena, Nature, 388, 658–660, 1997.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2002

Authors and Affiliations

  • Panayiotis Kapiris
    • 1
  • John Polygiannakis
    • 1
  • Athanassios Peratzakis
    • 1
  • Konstantinos Nomicos
    • 2
  • Konstantinos Eftaxias
    • 1
  1. 1.Department of PhysicsUniversity of AthensZografosGreece
  2. 2.Technological Educational Institute of AthensEgaleoGreece

Personalised recommendations