Earth, Planets and Space

, Volume 53, Issue 7, pp 703–708 | Cite as

BIFROST project: 3-D crustal deformation rates derived from GPS confirm postglacial rebound in Fennoscandia

  • Hans-Georg Scherneck
  • Jan M. Johansson
  • Martin Vermeer
  • James L. Davis
  • Glenn A. Milne
  • Jerry X. Mitrovica
Open Access


Since autumn 1993 the BIFROST project has provided daily GPS solutions of geodetic positions from a network of more than 40 stations covering a large area of the Baltic shield. This area is expected to show large vertical motion due to glacial isostatic rebound following the deglaciation at the end of the Pleistocene. This paper will discuss the inference of three-dimensional rates of crustal motion at the GPS stations with respect to (1) a plate-fixed average for the horizontal components; (2) a geocentric reference in order to infer absolute changes of sea level from vertical crustal motion and models of geoidal rebound. We show that the horizontal strain rate pattern is largely dominated by unilateral extension and not exhibiting horizontal shear to an important extent. In regard to the vertical motion a crucial issue is the stability of the geocentre in the GPS frame. We show results from an Empirical Orthogonal Function analysis that attenuates regionally correlated noise. In all components our observations suggest reasonably close agreement with forward computions on the basis of postglacial isostatic adjustment. A dominant tectonic signal would lead to a certain fraction of the batch of baselines to exhibit shortening. A tectonic process leading to a similar pattern of horizontal motion as expected from postglacial rebound can safely be dismissed in the context of the currently accepted plate tectonic setting. Thus, our baseline rate comparison will be a critical first order test of the prevailing style of deformation.


Tide Gauge Satellite Laser Range Baseline Length Empirical Orthogonal Function Analysis Glacial Isostatic Adjustment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahjos, T. and M. Uski, Earthquakes in northern Europe in 1375–1989, Tectonophys., 207, 1–23, 1992.CrossRefGoogle Scholar
  2. Anderson, D. L. and A. Dziewonski, Preliminary reference Earth model, Phys. Earth. Planet. Int., 25, 297–356, 1981.CrossRefGoogle Scholar
  3. Argus, D., Postglacial rebound in VLBI geodesy: on establishing a vertical reference, Geophys. Res. Lett., 23, 973–976, 1996.CrossRefGoogle Scholar
  4. Argus, D., W. R. Peltier, and M. M. Watkins, Glacial isostatic adjustment observed using very long baseline interferometry and satellite laser ranging geodesy, J. Geophys. Res., 104, 29,077–29,093, 1999.CrossRefGoogle Scholar
  5. Arvidsson, R. and O. Kulhanek, Seismodynamics of Sweden deduced from earthquake focal mechanisms, Geophys. J. Int., 116, 377–392, 1994.CrossRefGoogle Scholar
  6. Bennett, R. A., J. L. Davis, and B. P. Wernicke, Present-day pattern of Cordilleran deformation in the western United States, Geology, 27, 371–374, 1999.CrossRefGoogle Scholar
  7. BIFROST Project, R. A. Bennett, T. R. Carlsson, T. M. Carlsson, R. Chen, J. L. Davis, M. Ekman, G. Elgered, P. Elosegui, G. Hedling, R. T. K. Jaldehag, P. O. J. Jarlemark, J. M. Johansson, B. Jonsson, J. Kakkuri, H. Koivula, G. A. Milne, J. X. Mitrovica, B. I. Nilsson, M. Ollikainen, M. Paunonen, M. Poutanen, R. N. Pysklywec, B. O. Rönnäng, H.-G. Scherneck, I. I. Shapiro, and M. Vermeer, GPS measurements to constrain geodynamic processes in Fennoscandia, EOS Trans. AGU, 77, 337, 339, 1996.CrossRefGoogle Scholar
  8. Boucher, C., Z. Altamimi, M. Feissel, and P. Sillard, Results and Analysis of the ITRF94, IERS Technical Note 20, Observatoire de Paris, 157 pp., 1996.Google Scholar
  9. Brereton, R. and B. Müller, European stress: contributions from borehole breakouts, Philos. Trans. R. Soc. London, Ser. A, 337, 165–179, 1991.CrossRefGoogle Scholar
  10. Campbell, J. and A. Nothnagel, European VLBI for crustal dynamics, J. Geodynamics, 30, 321–326, 2000.CrossRefGoogle Scholar
  11. Carter, W. E., (ed.), Report of the Surrey Workshop of the IAPSO Tide Gauge Bench Mark Fixing Committee Dec. 1993, NOAA Technical Report, WHOI-89-31, 44 pp., 1994.Google Scholar
  12. Chen, J. L., C. R. Wilson, R. J. Eanes, and R. S. Nerem, Mass variations in the earth system and geocenter motions, in IERS Analysis Campaign to Investigate Motions of the Geocenter, edited by J. Ray, pp. 29–38, IERS Technical Note 25, Observatoire de Paris, 1999.Google Scholar
  13. Davis, J. L., J. X. Mitrovica, H.-G. Scherneck, and H. Han, Investigations of Fennoscandian glacial isostatic adjustment using modern sea level records, J. Geophys. Res., 104, 2733–2747, 1999.CrossRefGoogle Scholar
  14. DeMets, C., R. G. Gordon, D. F. Argus, and S. Stein, Effect of recent revisions to the geomagnetic reversal timescale on estimates of current plate motions, Geophys. Res. Lett., 21, 2191–2194, 1994.CrossRefGoogle Scholar
  15. Dong, D., J. O. Dickey, Y. Chao, and M. K. Cheng, Geocenter variations caused by mass redistribution of surface geophysical processes, in IERS Analysis Campaign to Investigate Motions of the Geocenter, edited by J. Ray, pp. 47–55, IERS Technical Note 25, Observatoire de Paris, 1999.Google Scholar
  16. Douglas, B. C., Global sea level rise, J. Geophys. Res., 96, 6981–6992, 1991.CrossRefGoogle Scholar
  17. Douglas, B. C., Global sea level acceleration, J. Geophys. Res., 97, 12,699–12,706, 1992.CrossRefGoogle Scholar
  18. Ekman, M., The world’s longest continued series of sea level observations, Pure Appl. Geophys., 127, 73–77, 1988.CrossRefGoogle Scholar
  19. Ekman, M., A consistent map of the postglacial uplift of Fennoscandia, Terra Nova, 8, 158–165, 1996.CrossRefGoogle Scholar
  20. Gregersen, S., Crustal stress regime in Fennoscandia from focal mechanisms, J. Geophys. Res., 97, 11,821–11,827, 1992.CrossRefGoogle Scholar
  21. Grünthal, G., and the GSHAP Region 3 Working Group, Seismic Hazard Assessment for Central, North and Northwest Europe: GSHAP Region 3, Annali di Geofisica, 42, 999–1011, 1999.Google Scholar
  22. Haas, R., E. Gueguen, H.-G. Scherneck, A. Nothnagel, and J. Campbell, Crustal motion results derived from observations in the European Geodetic VLBI network, Earth Planets Space, 52, 759–764, 2000.CrossRefGoogle Scholar
  23. Heflin, M. and M. Watkins, Geocenter estimates from the Global Positioning system, in IERS Analysis Campaign to Investigate Motions of the Geocenter, edited by J. Ray, pp. 55–70, IERS Technical Note 25, Observatoire de Paris, 1999.Google Scholar
  24. James, T. S. and A. Lambert, A comparison of VLBI data with the ICE-3G glacial rebound model, Geophys. Res. Lett., 20, 871–874, 1993.CrossRefGoogle Scholar
  25. James, T. S. and W. J. Morgan, Horizontal motions due to post-glacial rebound, Geophys. Res. Lett., 17, 957–960, 1990.CrossRefGoogle Scholar
  26. Johansson, J. M., J. L. Davis, H.-G. Scherneck, G. A. Milne, M. Vermeer, J. X. Mitrovica, R. A. Bennett, G. Elgered, P. Elósegui, H. Koivula, M. Poutanen, B. O. Rönnäng, and I. I. Shapiro, Continuous GPS measurements of postglacial adjustment in Fennoscandia, 1. Geodetic Results, J. Geophys. Res., 2001 (in press).Google Scholar
  27. Kahle, H.-G., M. Cocard, Y. Peter, A. Geiger, R. Reilinger, S. McClusky, R. King, A. Barka, and G. Veis, The GPS strain rate field in the Aegean Sea and western Anatolia, Geophys. Res. Lett., 26, 2513–2516, 1999.CrossRefGoogle Scholar
  28. Kakkuri, J. and R. Chen, On horizontal crustal strain in Finland, Bull. Géodesique, 66, 12–20, 1992.CrossRefGoogle Scholar
  29. Kijko, A., E. Skordas, R. Wählstrom, and P. Mäntyniemi, Maximum likelihood estimation of seismic hazard for Sweden, Natural Hazards, 7, 41–57, 1993.CrossRefGoogle Scholar
  30. Lambeck, K., C. Smither, and M. Ekman, Tests of glacial rebound models for Fennoscandinavia based on instrumental sea and lake level records, Geophys. J. Int., 135, 375–387, 1998.CrossRefGoogle Scholar
  31. Milne, G. A., J. X. Mitrovica, and J. L. Davis, Near-field hydro-isostasy: The implementation of a revised sea-level equation, Geophys. J. Int., 139, 464–482, 1999.CrossRefGoogle Scholar
  32. Milne, G. A., J. L. Davis, J. X. Mitrovica, H.-G. Scherneck, J. M. Johansson, and M. Vermeer, Space-based measurements provide insight to the classic problem of Fennoscandian uplift, Science, 291, 2381–2385, 2001.CrossRefGoogle Scholar
  33. Mitrovica, J. X. and W. R. Peltier, On post-glacial geoid relaxation over the equatorial oceans, J. Geophys. Res., 96, 20,053-20,071, 1991.Google Scholar
  34. Mitrovica, J. X., J. L. Davis, and I. I. Shapiro, Constraining proposed combinations of ice history and earth rheology using VLBI determined baseline length rates in North America, Geophys. Res. Lett., 20, 2387–2390, 1993.CrossRefGoogle Scholar
  35. Mitrovica, J. X., J. L. Davis, and I. I. Shapiro, A spectral formalism for computing three-dimensional deformations due to surface loads, 1. Theory, J. Geophys. Res., 99, 7075–7101, 1994a.CrossRefGoogle Scholar
  36. Mitrovica, J. X., J. L. Davis, and I. I. Shapiro, A spectral formalism for computing three-dimensional deformations due to surface loads, 2. Present-day glacial isostatic adjustment, J. Geophys. Res., 99, 7075–7101, 1994b.CrossRefGoogle Scholar
  37. Muir-Wood, R., The Scandinavian earthquakes of 22 December 1759 and 31 August 1819, Disasters, 12, 223–236, 1988.CrossRefGoogle Scholar
  38. Müller, B., M. L. Zoback, K. Fuchs, L. Mastin, S. Gregersen, N. Pavoni, O. Stephansson, and C. Ljunggren, Regional Patterns of tectonic stress in Europe, J. Geophys. Res., 97, 11,783–11,803, 1992.CrossRefGoogle Scholar
  39. Pan, M. and L. E. Sjöberg, Estimating present-day postglacial rebound and horizontal movements in Fennoscandia by repeated GPS campaigns in 1993 and 1997, Geophys. Res. Lett., 26, 771–774, 1999.CrossRefGoogle Scholar
  40. Pan, M., L. E. Sjöberg, C. J. Talbot, and E. Asenjo, GPS measurements of crustal deformation in Skåne, Sweden, between 1989 and 1996, GFF, 121, 67–72, 1999.CrossRefGoogle Scholar
  41. Scherneck, H.-G., J. M. Johansson, J. X. Mitrovica, and J. L. Davis, The BIFROST project: GPS Determined 3-D displacement rates in Fennoscandia from 800 days of continuous observations in the SWE-POS network, Tectonophys., 294, 305–322, 1998.CrossRefGoogle Scholar
  42. Scherneck, H.-G., G. A. Milne, J. M. Johansson, J. L. Davis, J. X. Mitrovica, and M. Vermeer, BIFROST project: 3-D crustal motions inferred from 1600 days of continuous GPS observations provide new constraints on Fennoscandian Rebound, EOS, Trans. AGU, 80 suppl., F274, 1999.Google Scholar
  43. Skordas, E. and O. Kulhánek, Spatial and temporal variations of Fennoscandian seismicity, Geophys. J. Int., 111, 577–588, 1992.CrossRefGoogle Scholar
  44. Slunga, R. S., The Baltic Shield earthquakes, Tectonophys., 189, 323–331, 1991.CrossRefGoogle Scholar
  45. Steinberger, B. M., H. Schmeling, and G. Marquart, Large-scale lithospheric stress field induced by global mantle circulation, Earth Planet. Sci. Lett., 186, 75–91, 2001.CrossRefGoogle Scholar
  46. Talbot, C. J. and R. Slunga, Patterns of active shear in Fennoscandia, in Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound, edited by S. Gregersen and P. W. Basham, pp. 441–466, Kluwer, Dordrecht, 1989.CrossRefGoogle Scholar
  47. Tushingham, A. M. and W. R. Peltier, ICE-3G: A new global model of late pleistocene deglaciation based upon geophysical predictions of postglacial relative sea level change, J. Geophys. Res., 96, 4497–4523, 1991.CrossRefGoogle Scholar
  48. Wdowinski, S., Y. Bock, J. Zhang, P. Fang, and J. Genrich, Southern California permanent geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake, J. Geophys. Res., 102, 18,057–18,070, 1997.CrossRefGoogle Scholar
  49. Webb, F. H. and J. F. Zumberge, An introduction to GIPSY/OASIS-II precision software for the analysis of data from the Global Positioning System, JPL Publ. No. D-11088, Jet Propulsion Laboratory, Pasadena, Cal., 1993.Google Scholar
  50. Wessel, P. and W. H. F. Smith, New version of the Generic Mapping Tools released, EOS Trans. AGU, 76, 329, 1995.CrossRefGoogle Scholar
  51. Wieczerkowski, K., J. X. Mitrovica, and D. Wolf, A revised relaxation time spectrum for Fennoscandia, Geophys. J. Int., 139, 68–86, 1999.Google Scholar
  52. Zhang, J., Y. Bock, H. Johnson, P. Fang, S. Williams, J. Genrich, S. Wdowinski, and J. Behr, Southern California permanent GPS geodetic array: error analysis of daily position estimates and site velocities, J. Geophys. Res., 102, 18,035–18,055, 1997.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2001

Authors and Affiliations

  • Hans-Georg Scherneck
    • 1
  • Jan M. Johansson
    • 1
  • Martin Vermeer
    • 2
  • James L. Davis
    • 3
  • Glenn A. Milne
    • 4
  • Jerry X. Mitrovica
    • 5
  1. 1.Chalmers, Onsala Space ObservatoryOnsalaSweden
  2. 2.Finnish Geodetic Institute, PL 15MasalaFinland
  3. 3.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  4. 4.Department of Geological SciencesUniversity of DurhamDurhamUK
  5. 5.Department of PhysicsUniversity of TorontoTorontoCanada

Personalised recommendations