Earth, Planets and Space

, Volume 52, Issue 11, pp 893–899 | Cite as

Radio holographic principle for observing natural processes in the atmosphere and retrieving meteorological parameters from radio occultation data

  • K. Igarashi
  • A. Pavelyev
  • K. Hocke
  • D. Pavelyev
  • I. A. Kucherjavenkov
  • S. Matyugov
  • A. Zakharov
  • O. Yakovlev
Open Access
Article

Abstract

The radio holographic principle is briefly described and tested by using radio occultation data of the GPS/MET and MIR/GEO experiments. Sub-Fresnel spatial resolution ∼12 m/pixel was achieved using focused synthetic aperture radio holographic approach, and direct evidence of multibeam propagation effects in the atmosphere was obtained. The achieved instrumental accuracy in angular distance measurements was near 0.004 milliradian/pixel, and observed angular distance between different rays was equal to 0.3 milliradians. The angular resolution of the radio holographic method depends on the wavelength as λ1 compared to λ1/2 in conventional methods. In general case the principal limit of the vertical resolution may be determined using focused synthetic aperture antenna theory and may achieve a value ∼20–40 m under assumptions of spherical symmetry and quiet atmospheric conditions. Wave structures were discovered in the altitude distribution of the gradient electron density at a height interval of 60–95 km with spatial period 1–2 km and vertical resolution 300–500 m. Good correspondence was found between the temperature profiles revealed by radio holographic analysis and those obtained by traditional retrieval using UCAR GPS/MET data.

Keywords

Global Position System Vertical Resolution Radio Occultation Main Beam Angular Spectrum 

References

  1. Feng, D. D. and B. M. Herman, Remotely sensing the Earth’s atmosphere using the Global Positioning System (GPS)—the GPS/MET data analysis, Journal of Atmospheric and Ocean Technology, 16, 990–1002, 1999.CrossRefGoogle Scholar
  2. Gorbunov, M. E. and A. S. Gurvich, Microlab-1 experiment: Multipath effects in the lower troposphere, J. Geophys. Res., 103, 13,819–13,826, 1998.CrossRefGoogle Scholar
  3. Gorbunov, M. E., A. S. Gurvich, and L. Bengtsson, Advanced algorithms of inversion of GPS/MET satellite data and their application to reconstruction of temperature and humidity, Report 211 Max-Planck-Institute for Meteorology ISSN 0937-1060, 1996.Google Scholar
  4. Gorbunov, M. E., S. V. Sokolovskiy, and L. Bengtsson, Space Refractive Tomography of the Atmosphere: Modelling of Direct and Inverse Problems, Report 210 Max-Planck-Institute for Meteorology ISSN 0937-1060, 1996.Google Scholar
  5. Gorbunov, M. E., A. S. Gurvich, and L. Kornblueh, Comparative analysis of radio holographic methods of radio occultation data, Radio Sci., 35(4), 1025–1034, 2000.CrossRefGoogle Scholar
  6. Hocke, K., Inversion of GPS meteorology data, Annales Geophysicae, 15, 443–450, 1997.CrossRefGoogle Scholar
  7. Hocke, K., A. Pavelyev, O. Yakovlev, L. Barthes, and N. Jakowski, Radio occultation data analysis by radio holographic method, JASTP, 61, 1169–1177, 1999.Google Scholar
  8. Igarashi, K., Y. Murayama, K. Hocke, R. Yamazaki, M. Kunitake, M. Nagayama, and I. Nishimuta, Coordinated observations of the dynamics and coupling processes of mesosphere and lower thermosphere winds with MF radars at the middle-high latitude, Earth Planets Space, 51, 657–664, 1999.CrossRefGoogle Scholar
  9. Karayel, E. T. and D. P. Hinson, Sub-Fresnel-scale vertical resolution in atmospheric profiles from radio occultation, Radio Sci., 32(2), 411–428, 1997.CrossRefGoogle Scholar
  10. Kravtsov, Yu. and Yu. N. Orlov, Geometrical Optics of Inhomogeneous Media, Springer-Verlag, New York, 1990.CrossRefGoogle Scholar
  11. Kursinski, E. R., et al., Initial results of radio occultation observations of Earth’s atmosphere: using the Global Positioning System, Science, 271, 1107–1110, 1996.CrossRefGoogle Scholar
  12. Kursinski, E. R., G. A. Hajj, J. T. Schofield, R. P. Linfield, and K. R. Hardy, Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System, J. Geophys. Res., 102(D19), 23,429–23,465, 1997.CrossRefGoogle Scholar
  13. Lindal, G. F., The atmosphere of Neptune: An analysis of radio occultation data acquired with Voyager 2, Astron. J., 103, 967–982, 1992.CrossRefGoogle Scholar
  14. Lindal, G. F., J. R. Lyons, D. N. Sweetnam, V. R. Eshleman, D. P. Hinson, and G. L. Tyler, The atmosphere of Uranus: results of radio occultation measurements with Voyager 2, J. Geophys. Res., 92, 14,987–15,001, 1987.CrossRefGoogle Scholar
  15. Marouf, E. A., G. L. Tyler, and P. A. Rosen, Profiling Saturn rings by radio occultation, Icarus, 68, 120–166, 1986.CrossRefGoogle Scholar
  16. Melbourne, W. G., E. S. Davis, C. B. Duncan, G. A. Hajj, K. R. Hardy, E. R. Kursinski, T. K. Meehan, L. E. Young, and T. P. Yunck, The Application of Spaceborne GPS to Atmospheric Limb Sounding and Global Change Monitoring, 147 pp., JPL Publication 94-18, April 1994.Google Scholar
  17. Mortensen, M. D. and P. Hoeg, Inversion of GPS occultation measurements using Fresnel diffraction theory, Geophys. Res. Lett., 25(13), 2441–2449, 1998.CrossRefGoogle Scholar
  18. Mortensen, M. D., R. P. Linfield, and E. R. Kursinski, Vertical resolution approaching 100 m for GPS occultations of the Earth’s atmosphere, Radio Sci., 34(6), 1475–1483, 1999.CrossRefGoogle Scholar
  19. Pavelyev, A., On the possibility of radio holographic investigation on communication link satellite-to-satellite, Radioteknika i elektronika, 43(8), 939–944, 1998 (in Russian).Google Scholar
  20. Pavelyev, A. and S. D. Yeliseyev, Study of the Atmospheric Layer near the Ground using Bistatic Radar, Journal of Communication Technology and Electronics, No. 9, 124–130, 1988.Google Scholar
  21. Pavelyev, A., S. Matugov, I. Kalashnikov, and O. Yakovlev, Analysis of the features of radio occultation method for the Earth’s atmosphere study, in Electromagnetic Waves in the Atmosphere and Space, pp. 208–218, “Nauka” Ed., Moscow, 1986 (in Russian).Google Scholar
  22. Pavelyev, A., A. V. Volkov, A. I. Zakharov, S. A. Krytikh, and A. I. Kucherjavenkov, Bistatic Radar as a Tool for Earth Investigation Using Small Satellites, Acta Astronautica, 39, 721–730, 1996.CrossRefGoogle Scholar
  23. Pavelyev, A., K. Hocke, O. Yakovlev, N. Jakowski, J. Wickert, S. Matugov, A. Kucherjavenkov, A. Wehrenpfennig, and A. Zakharov, Radio holographic method for atmosphere sounding using small satellite, in Small satellites for Earth Observation. Digest of the 2nd International Symposium of the International Academy of Astronautics, edited by H. P. Roser, R. Sandau, A. Valenzuella, pp. 199–202, Wissenschaft und Technik Verlag, Berlin, 1999.Google Scholar
  24. Rocken, C., et al., Analysis and validation of GPS/MET data in the neutral atmosphere, J. Geophys. Res., 102(D25), 29,849–29,866, 1997.CrossRefGoogle Scholar
  25. Schreiner, W. S., S. V. Sokolovskij, C. Rocken, and D. C. Hunt, Analysis and validation of GPS/MET radio occultation data in the ionosphere, Radio Sci., 34(4), 949–966, 1999.CrossRefGoogle Scholar
  26. Tyler, G. L., et al., Voyager radio science observations of Neptune and Triton, Science, 246, 1466–1473, 1989.CrossRefGoogle Scholar
  27. Vorob’ev, V. V. and T. G. Krasil’nikova, Estimation of accuracy of the atmosphere refractive index recovery from Doppler shift measurements at frequencies used in the NAVSTAR system, Izv Russ. Acad. Sci., Physics of the Atmosphere and Ocean, Engl. Transl., 29(5), 602–609, 1994.Google Scholar
  28. Vorob’ev, V. V., A. S. Gurvich, V. Kan, S. V. Sokolovskiy, O. V. Fedorova, and A. V. Shmakov, Structure of the Ionosphere from the Radio-Occultation GPS-“Microlab-1’ Satellite Data: Preliminary Results, Earth Observations and Remote Sensing, 15, 609–622, 1999.Google Scholar
  29. Ware, R., et al., GPS sounding of the atmosphere from low Earth orbit—Preliminary results, Bull. Am. Meteorol. Soc., 77, 19–40, 1996.CrossRefGoogle Scholar
  30. Wehner, D. R., High Resolution Radar, 573 pp., Ed. Artech House, Inc. 685 Canton Street Norwood, MA 02062, 1987.Google Scholar
  31. Yakovlev, O. I., Space Radio Physics, edited by By Russian Fund of Fundamental Researches (RFBR), 478 pp., Moscow, 1998 (in Russian).Google Scholar
  32. Yakovlev, O. I., S. S. Matyugov, and I. A. Vilkov, Attenuation and scintillation of radio waves in the Earth’s atmosphere from radio occultation experiments on satellite-to-satellite links, Radio Sci., 30(3), 591–602, 1995.CrossRefGoogle Scholar
  33. Zverev, V. A., Radio Optics, edited by Soviet Radio, Moscow, 1975 (in Russian).Google Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2000

Authors and Affiliations

  • K. Igarashi
    • 1
  • A. Pavelyev
    • 2
  • K. Hocke
    • 3
  • D. Pavelyev
    • 2
  • I. A. Kucherjavenkov
    • 2
  • S. Matyugov
    • 2
  • A. Zakharov
    • 2
  • O. Yakovlev
    • 2
  1. 1.Communications Research LaboratoryMinistry of Posts and TelecommunicationsTokyoJapan
  2. 2.Institute of Radio Engineering and Electronics of Russian Academy of Sciencies (IRE RASMoscow RegionRussia
  3. 3.GeoForschungsZentrum Potsdam (GFZ-Potsdam)PotsdamGermany

Personalised recommendations