Earth, Planets and Space

, Volume 50, Issue 8, pp 635–640 | Cite as

Improving geomagnetic field models for the period 1980–1999 using Ørsted data

  • Pascale Ultré-Guérard
  • Dominique Jault
  • Mioara Alexandrescu
  • José Achache
Open Access
Article

Abstract

The Danish satellite Ørsted is due to be launched in 1998, and should provide, for the first time since the Magsat mission (1979–1980), a dense and global coverage of the Earth’s surface with vector measurements of the magnetic field. In this paper, we compare the expected error in the main field models computed for the 1970–1999 time interval using observatory data, with or without the a priori information given by the knowledge of the field at both Magsat and Ørsted epochs. This work is based on the reasonable hypothesis that the main field models derived from Ørsted data will be as accurate as the Magsat models. The a priori information given by the Magsat and Ørsted models is based on a linear behaviour of the rate-of-change of the field throughout this period, plus a noise level which can be estimated as a function of time and degree from past field changes. The expected error in the models computed for the 1980–1999 period with a priori information appears to be significantly smaller than the expected error in the models computed without this information. This result is related to the heterogeneous distribution of the observatories over the Earth surface. Consequently, when the Ørsted data is available, improved models can be computed for the 1980–1999 period particularly in regions without observatory data. This method with a priori information may allow the use of the same set of observatories throughout the entire period. Indeed, our method alleviates the requirement of a very dense data distribution.

Keywords

Observatory Data Covariance Matrice Secular Variation Spherical Harmonic Degree Valette 

References

  1. Achache, J., V. Courtillot, J. Ducruix, and J.-L. Le Mouël, The late 1960’s secular variation impulse: further constraints on deep mantle conductivity, Phys. Earth Planet. Inter., 23, 72–75, 1980.CrossRefGoogle Scholar
  2. Alexandrescu, M., C. HaDuyen, and J. L. Le Mouël, Geographical distribution of magnetic observatories and field modelling, J. Geomag. Geoelectr., 46, 891–901, 1994.CrossRefGoogle Scholar
  3. Alexandrescu, M., D. Gibert, G. Hulot, J.-L. Le Mouël, and G. Saracco, Detection of geomagnetic jerks using wavelet analysis, J. Geophys. Res., 100, 12557–12572, 1995.CrossRefGoogle Scholar
  4. Alexandrescu, M., D. Gibert, G. Hulot, J.-L. Le Mouël, and G. Saracco, Wordwide wavelet analysis of geomagnetic jerks, J. Geophys. Res., 101, 21975–21994, 1996.CrossRefGoogle Scholar
  5. Bloxham, J. and A. Jackson, Time-dependent mapping of the magnetic field at the core-mantle boundary, J. Geophys. Res., 97, 19537–19563, 1992.CrossRefGoogle Scholar
  6. Bloxham, J., D. Gubbins, and A. Jackson, Geomagnetic secular variation, Phil. Trans. R. Soc. Lond., A329, 415–502, 1989.CrossRefGoogle Scholar
  7. Cohen, Y., Traitements et interprétations de données spatiales en géomagnétisme: étude des variations latérales d’aimantation de la lithosphère terrestre, Ph.D. Thesis, Université Paris 7, 1989.Google Scholar
  8. Courtillot, V., J. Ducruix, and J.-L. Le Mouël, Sur une accélération récente de la variation séculaire du champ magnétique terrestre, C. R. Acad. Sci. D, 287, 1095–1098, 1978.Google Scholar
  9. Ducruix, J., V. Courtillot, and J.-L. Le Mouël, The late 1960’s secular variation impulse, the eleven year magnetic variation and the electrical conductivity of the deep mantle, Geophys. J. R. Astr. Soc., 61, 73–94, 1980.CrossRefGoogle Scholar
  10. Gubbins, D. and J. Bloxham, Geomagnetic field analysis, III. Magnetic fields on the core-mantle boundary, Geophys. J. R. Astr. Soc., 80, 695–713, 1985.CrossRefGoogle Scholar
  11. Hulot, G. and J.-L. Le Mouël, A statistical approach to the Earth’s main magnetic field, Phys. Earth Planet. Inter., 82, 167–183, 1994.CrossRefGoogle Scholar
  12. Langel, R. A., The main field, in Geomagnetism, edited by J. A. Jacobs, pp. 249–512, Academic Press, London, 1987.Google Scholar
  13. Langel, R. A. and R. H. Estes, The near-Earth magnetic field at 1980 determined from Magsat data, J. Geophys. Res., 90, 2495–2509, 1985.CrossRefGoogle Scholar
  14. Langel, R. A., R. H. Estes, and G. D. Mead, Some new methods in geomagnetic field modeling applied to the 1960–1980 epoch, J. Geomag. Geoelectr., 34, 327–349, 1982.CrossRefGoogle Scholar
  15. Langel, R. A., T. J. Sabaka, R. T. Baldwin, and J. A. Conrad, The near-Earth magnetic field from magnetospheric and quiet-day ionospheric sources and how it is modeled, Phys. Earth Planet. Inter., 98, 235–267, 1996.CrossRefGoogle Scholar
  16. Tarantola, A. and B. Valette, Generalized nonlinear inverse problems solved using the least squares criterion, R. Geophys. Space Phys., 20, 219–232, 1982.CrossRefGoogle Scholar
  17. Ultré-Guérard, P. and J. Achache, Error analysis of total field models derived from POGS data, J. Geomag. Geoelectr, 49, 453–467, 1997.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 1998

Authors and Affiliations

  • Pascale Ultré-Guérard
    • 1
  • Dominique Jault
    • 1
  • Mioara Alexandrescu
    • 1
  • José Achache
    • 1
  1. 1.Institut de Physique du Globe de ParisParis Cedex 05France

Personalised recommendations