Earth, Planets and Space

, Volume 50, Issue 5, pp 445–452 | Cite as

Model calculations of the planetary ion distribution in the Martian tail

Open Access
Article

Abstract

Based on a recent model of the Martian atmosphere/exosphere and a model of the magnetic field and solar wind flow around Mars, the distribution of different planetary ion species in the near tail is calculated. Three main regions are identified: 1) “clouds” of pickup ions with distinct mass separation travel along cycloidal trajectories; 2) another group of ions forms a distinct plasma mantle in the magnetosphere; 3) a third population fills up the plasma sheet. Further, the energy of ions in different locations is also analyzed. Finally, comparison of observations made onboard the Phobos-2 spacecraft shows a reasonable agreement with simulation results.

Keywords

Solar Wind Interplanetary Magnetic Field Plasma Sheet Solar Wind Flow Ambipolar Electric Field 

References

  1. Barabash, S. and O. Norberg, Indirect detection of the Martian helium corona, Geophys. Res. Lett., 21, 1547–1550, 1994.CrossRefGoogle Scholar
  2. Barabash, S., E. Kallio, R. Lundin, and H. Koskinen, Measurements of the nonthermal helium escape from Mars, J. Geophys. Res., 100, 21307–21316, 1995.CrossRefGoogle Scholar
  3. Chamberlain, J. W. and D. M. Hunten, Theory of Planetary Atmospheres, 481 pp., Academic Press, 1987.Google Scholar
  4. Dubinin, E., R. Lundin, O. Norberg, and N. Pissarenko, Ion acceleration in the Martian tail: Phobos observations, J. Geophys. Res., 98, 3991–3997, 1993a.CrossRefGoogle Scholar
  5. Dubinin, E., R. Lundin, H. Koskinen, and O. Norberg, Cold ions at the Martian bow shock: Phobos observations, J. Geophys. Res., 98, 5617–5623, 1993b.CrossRefGoogle Scholar
  6. Dubinin, E., K. Sauer, R. Lundin, O. Norberg, J.-G. Trotignon, K. Schwingenschuh, M. Delva, and W. Riedler, Plasma characteristics of the boundary layer in the Martian magnetosphere, J. Geophys. Res., 101, 27061–27075, 1996.CrossRefGoogle Scholar
  7. Harold, J. B. and A. B. Hassam, Two ion fluid numerical investigation of solar wind gas releases, J. Geophys. Res., 99, 19325–19340, 1994.CrossRefGoogle Scholar
  8. Kallio, E., H. Koskinen, S. Barabash, C. Nairn, and K. Schwingenschuh, Oxygen outflow in the Martian magnetotail, Geophys. Res. Lett., 22, 2449–2452, 1995.CrossRefGoogle Scholar
  9. Krasnopolsky, V. A. and G. R. Gladstone, Helium on Mars: EUVE and Phobos data and implications for Mars’ evolution, J. Geophys. Res., 101, 15765–15772, 1996.CrossRefGoogle Scholar
  10. Krasnopolsky, V. A., S. Bowyer, S. Chakrabarti, G. R. Gladstone, and J. S. McDonald, First measurements of helium on Mars: implications for the problem of radiogenic gases on the terrestrial planets, Icarus, 109, 337–351, 1994.CrossRefGoogle Scholar
  11. Lichtenegger, H. and E. Dubinin, Solar wind absorption and loss rates of planetary ions in the Martian environment during solar minimum and maximum activity, Austrian Academy of Sciences, Report IWF9801, 1–11, 1998.Google Scholar
  12. Lichtenegger, H., K. Schwingenschuh, E. Dubinin, and R. Lundin, Particle simulation in the Martian magnetotail, J. Geophys. Res., 100, 21659–21667, 1995.CrossRefGoogle Scholar
  13. Lichtenegger, H., E. Dubinin, and W.-H. Ip, The depletion of the solar wind near Mars, Adv. Space Res., 20 (2), 143–147, 1997.CrossRefGoogle Scholar
  14. Luhmann, J. G., A model of the ion wake of Mars, Geophys. Res. Lett., 17, 869–872, 1990.CrossRefGoogle Scholar
  15. Luhmann, J. G., A model of the ionospheric tail rays of Venus, J. Geophys. Res., 98, 17615–17621, 1993.CrossRefGoogle Scholar
  16. Luhmann, J. G. and K. Schwingenschuh, A model of the energetic ion environment of Mars, J. Geophys. Res., 95, 939–945, 1990.CrossRefGoogle Scholar
  17. Lundin, R., B. Hultqvist, S. Olsen et al., The ASPERA experiment on the Soviet Phobos spacecraft, in Solar System Plasma Physics, Geophys. Monogr. Ser., Vol. 54, edited by J. H. Waite, R. L. Burch, and T. Moore, pp. 417–424, AGU, Washington, D.C., 1989a.CrossRefGoogle Scholar
  18. Lundin, R., A. Zakharov, R. Pellinen, H. Borg, B. Hultqvist, N. Pissarenko, E. Dubinin, S. Barabash, I. Liede, and H. Koskinen, First measurements of the ionospheric plasma escape from Mars, Nature, 341, 609–612, 1989b.CrossRefGoogle Scholar
  19. Lundin, R., A. Zakharov, R. Pellinen, S. Barabash, H. Borg, E. Dubinin, B. Hultqvist, and H. Koskinen, ASPERA/PHOBOS measurements of the ion outflow from the Martian ionosphere, Geophys. Res. Lett., 17, 873–876, 1990.CrossRefGoogle Scholar
  20. Norberg, O., S. Barabash, and R. Lundin, Observations of molecular ions in the Martian plasma environment, in Plasma Environment of Nonmagnetic Planets, COSPAR colloq. ser. Vol. 4, edited by T. Gombosi, pp. 299–304, Pergamon, New York, 1993.Google Scholar
  21. Rosenbauer, H., N. Shutte, I. Apathy et al., Ions of Martian origin and plasma sheet in the Martian magnetosphere:L initial results of the TAUS experiment, Nature, 341, 612–614, 1989.CrossRefGoogle Scholar
  22. Spreiter, J. R. and S. S. Stahara, Solar wind flow past Venus: Theory and comparisons, J. Geophys. Res., 85, 7715–7738, 1980.CrossRefGoogle Scholar
  23. Tanaka, T., Configurations of solar wind flow and magnetic field around the planets with no magnetic field: Calculation by a new MHD simulation scheme, J. Geophys. Res., 98, 17251–17262, 1993.CrossRefGoogle Scholar
  24. Verigin, M., N. Shutte, A. Galeev, K. Gringauz et al., Ions of planetary origin in the Martian magnetosphere (Phobos-2/TAUS experiment), Planet. Space Sci., 39, 131–137, 1991.CrossRefGoogle Scholar
  25. Wallis, M. K. and A. D. Johnstone, Implanted ions and the draped cometary field, in Cometary Exploration, Vol. 1, edited by T. Gombosi, 311 pp., Central Institute for Physics, Hungarian Academy of Sciences, 1983.Google Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 1998

Authors and Affiliations

  1. 1.Space Research InstituteAustrian Academy of SciencesGrazAustria
  2. 2.Max-Planck-Institut für AeronomieKatlenburg-LindauGermany
  3. 3.Space Research InstituteRussian Academy of SciencesMoscowRussia
  4. 4.International Space Science Institute (ISSI)BernSwitzerland

Personalised recommendations